18,886 research outputs found
Fatigue experience from tests carried out with forged beam and frame structures in the development of the Saab aircraft Viggen
A part of the lower side of the main wing at the joint of the main spar with the fuselage frame was investigated. This wing beam area was simulated by a test specimen consisting of a spar boom of AZ 74 forging (7075 aluminum alloy modified with 0.3 percent Ag) and a portion of a honeycomb sandwich panel attached to the boom flange with steel bolts. The cross section was reduced to half scale. However, the flange thickness, the panel height, and the bolt size were full scale. Further, left and right portions of the fuselage frame intended to carry over the bending moment of the main wing were tested. Each of these frame halves consisted of a forward and a rear forging (7079 aluminum alloy, overaged) connected by an outer and inner skin (Alclad 7075) creating a box beam. These test specimens were full scale and were constructed principally of ordinary aircraft components. The test load spectrum was common to both types of specimens with regard to percentage levels. It consisted of maneuver and gust loads, touchdown loads, and loads due to ground roughness. A load history of 200 hours of flight with 15,000 load cycles was punched on a tape. The loads were randomized in groups according to the flight-by-flight principle. The highest positive load level was 90 percent of limit load and the largest negative load was -27 percent. A total of 20 load levels were used. Both types of specimens were provided with strain gages and had a nominal stress of about 300 MN/sq m in some local areas. As a result of the tests, steps were taken to reduce the risk of fatigue damage in aircraft. Thus stress levels were lowered, radii were increased, and demands on surface finish were sharpened
A local hidden variable theory for the GHZ experiment
A recent analysis by de Barros and Suppes of experimentally realizable GHZ
correlations supports the conclusion that these correlations cannot be
explained by introducing local hidden variables. We show, nevertheless, that
their analysis does not exclude local hidden variable models in which the
inefficiency in the experiment is an effect not only of random errors in the
detector equipment, but is also the manifestation of a pre-set, hidden property
of the particles ("prism models"). Indeed, we present an explicit prism model
for the GHZ scenario; that is, a local hidden variable model entirely
compatible with recent GHZ experiments.Comment: 17 pages, LaTeX, 7 eps figures, computer demo:
http://hps.elte.hu/~leszabo/GHZ.html, an improper figure is replace
Tunable effective g-factor in InAs nanowire quantum dots
We report tunneling spectroscopy measurements of the Zeeman spin splitting in
InAs few-electron quantum dots. The dots are formed between two InP barriers in
InAs nanowires with a wurtzite crystal structure grown by chemical beam
epitaxy. The values of the electron g-factors of the first few electrons
entering the dot are found to strongly depend on dot size and range from close
to the InAs bulk value in large dots |g^*|=13 down to |g^*|=2.3 for the
smallest dots. These findings are discussed in view of a simple model.Comment: 4 pages, 3 figure
Minimum detection efficiency for a loophole-free atom-photon Bell experiment
In Bell experiments, one problem is to achieve high enough photodetection to
ensure that there is no possibility of describing the results via a local
hidden-variable model. Using the Clauser-Horne inequality and a two-photon
non-maximally entangled state, a photodetection efficiency higher than 0.67 is
necessary. Here we discuss atom-photon Bell experiments. We show that, assuming
perfect detection efficiency of the atom, it is possible to perform a
loophole-free atom-photon Bell experiment whenever the photodetection
efficiency exceeds 0.50.Comment: REVTeX4, 4 pages, 1 figur
An M-theory solution generating technique and SL(2,R)
In this paper we generalize the O(p+1,p+1) solution generating technique
(this is a method used to deform Dp-branes by turning on a NS-NS B-field) to
M-theory, in order to be able to deform M5-brane supergravity solutions
directly in eleven dimensions, by turning on a non zero three form A. We find
that deforming the M5-brane, in some cases, corresponds to performing certain
SL(2,R) transformations of the Kahler structure parameter for the three-torus,
on which the M5-brane has been compactified. We show that this new M-theory
solution generating technique can be reduced to the O(p+1,p+1) solution
generating technique with p=4. Further, we find that it implies that the open
membrane metric and generalized noncommutativity parameter are manifestly
deformation independent for electric and light-like deformations. We also
generalize the O(p+1,p+1) method to the type IIA/B NS5-brane in order to be
able to deform NS5-branes with RR three and two forms, respectively. In the
type IIA case we use the newly obtained solution generating technique and
deformation independence to derive a covariant expression for an open D2-brane
coupling, relevant for OD2-theory.Comment: 24 pages, Latex. v2:Sections 3.2 and 3.3 improved. v3:Some
clarifications added. Version published in JHE
Recommended from our members
Klotho controls the brain-immune system interface in the choroid plexus.
Located within the brain's ventricles, the choroid plexus produces cerebrospinal fluid and forms an important barrier between the central nervous system and the blood. For unknown reasons, the choroid plexus produces high levels of the protein klotho. Here, we show that these levels naturally decline with aging. Depleting klotho selectively from the choroid plexus via targeted viral vector-induced knockout in Klotho flox/flox mice increased the expression of multiple proinflammatory factors and triggered macrophage infiltration of this structure in young mice, simulating changes in unmanipulated old mice. Wild-type mice infected with the same Cre recombinase-expressing virus did not show such alterations. Experimental depletion of klotho from the choroid plexus enhanced microglial activation in the hippocampus after peripheral injection of mice with lipopolysaccharide. In primary cultures, klotho suppressed thioredoxin-interacting protein-dependent activation of the NLRP3 inflammasome in macrophages by enhancing fibroblast growth factor 23 signaling. We conclude that klotho functions as a gatekeeper at the interface between the brain and immune system in the choroid plexus. Klotho depletion in aging or disease may weaken this barrier and promote immune-mediated neuropathogenesis
A Study of Holographic Renormalization Group Flows in d=6 and d=3
We present an explicit study of the holographic renormalization group (RG) in
six dimensions using minimal gauged supergravity. By perturbing the theory with
the addition of a relevant operator of dimension four one flows to a
non-supersymmetric conformal fixed point. There are also solutions describing
non-conformal vacua of the same theory obtained by giving an expectation value
to the operator. One such vacuum is supersymmetric and is obtained by using the
true superpotential of the theory. We discuss the physical acceptability of
these vacua by applying the criteria recently given by Gubser for the four
dimensional case and find that those criteria give a clear physical picture in
the six dimensional case as well. We use this example to comment on the role of
the Hamilton-Jacobi equations in implementing the RG. We conclude with some
remarks on AdS_4 and the status of three dimensional superconformal theories
from squashed solutions of M-theory.Comment: 15 pages, 5 figures, V2: minor change
Holographic Noncommutativity
We examine noncommutative Yang-Mills and open string theories using
magnetically and electrically deformed supergravity duals. The duals are near
horizon regions of Dp-brane bound state solutions which are obtained by using
O(p+1,p+1) transformations of Dp-branes. The action of the T-duality group
implies that the noncommutativity parameter is constant along holographic
RG-flows. The moduli of the noncommutative theory, i.e., the open string metric
and coupling constant, as well as the zero-force condition are shown to be
invariant under the O(p+1,p+1) transformation, i.e., deformation independent.
We find sufficient conditions, including zero force and constant dilaton in the
ISO(3,1)-invariant D3 brane solution, for exact S-duality between
noncommutative Yang-Mills and open string theories. These results are used to
construct noncommutative field and string theories with N=1 supersymmetry from
the T^(1,1) and Pilch-Warner solutions. The latter has a non-trivial zero-force
condition due to the warping.Comment: latex, 40 pp. v2: minor changes, one ref. added. v3: corrections in
eqs. 27 and 7
- …
