13,523 research outputs found

    High temperature measuring device

    Get PDF
    Ultrasonic pulse technique for measuring average gas temperature in nuclear rocket engine - sound propagation and environmental studie

    Information requirements for guidance and control systems

    Get PDF
    Control or guidance system performance dependency on information handling by subsystem

    Paper Session II-B - Smarter Software for Enhanced Vehicle Health Monitoring and Inter-Planetary Exploration

    Get PDF
    The existing philosophy for space mission control was born in the early days of the space program when technology did not exist to put significant control responsibility onboard the spacecraft. NASA relied on a team of ground control experts to troubleshoot systems when problems occurred. As computing capability improved, more responsibility was handed over to the systems software. However, there is still a large contingent of both launch and flight controllers supporting each mission. New technology can update this philosophy to increase mission assurance and reduce the cost of inter-planetary exploration. The advent of model-based diagnosis and intelligent planning software enables spacecraft to handle most routine problems automatically and allocate resources in a flexible way to realize mission objectives. The manifests for recent missions include multiple subsystems and complex experiments. Spacecraft must operate at longer distances from earth where communications delays make earthbound command and control impractical. NASA’s Ames Research Center (ARC) has demonstrated the utility of onboard diagnosis and planning with the Remote Agent experiment in 1999. KSC has pioneered model-based diagnosis and demonstrated its utility for ground support operations. KSC and ARC are cooperating in research to improve the state of the art of this technology. This paper highlights model-based reasoning applications for Moon and Mars missions including in-situ resource utilization and enhanced vehicle health monitoring

    Relativistic nucleon optical potentials with isospin dependence in Dirac Brueckner Hartree-Fock approach

    Full text link
    The relativistic optical model potential (OMP) for nucleon-nucleus scattering is investigated in the framework of Dirac-Brueckner-Hartree-Fock (DBHF) approach using the Bonn-B One-Boson- Exchange potential for the bare nucleon-nucleon interaction. Both real and imaginary parts of isospin-dependent nucleon self-energies in nuclear medium are derived from the DBHF approach based on the projection techniques within the subtracted T -matrix representation. The Dirac potentials as well as the corresponding Schrodinger equivalent potentials are evaluated. An improved local density approximation is employed in this analysis, where a range parameter is included to account for a finite-range correction of the nucleon-nucleon interaction. As an example the total cross sections, differential elastic scattering cross sections, analyzing powers for n, p + 27Al at incident energy 100 keV < E < 250 MeV are calculated. The results derived from this microscopic approach of the OMP are compared to the experimental data, as well as the results obtained with a phenomenological OMP. A good agreement between the theoretical results and the measurements can be achieved for all incident energies using a constant value for the range parameter.Comment: 10 pages, 16 figure

    A method for the estimation of p-mode parameters from averaged solar oscillation power spectra

    Full text link
    A new fitting methodology is presented which is equally well suited for the estimation of low-, medium-, and high-degree mode parameters from mm-averaged solar oscillation power spectra of widely differing spectral resolution. This method, which we call the "Windowed, MuLTiple-Peak, averaged spectrum", or WMLTP Method, constructs a theoretical profile by convolving the weighted sum of the profiles of the modes appearing in the fitting box with the power spectrum of the window function of the observing run using weights from a leakage matrix that takes into account both observational and physical effects, such as the distortion of modes by solar latitudinal differential rotation. We demonstrate that the WMLTP Method makes substantial improvements in the inferences of the properties of the solar oscillations in comparison with a previous method that employed a single profile to represent each spectral peak. We also present an inversion for the internal solar structure which is based upon 6,366 modes that we have computed using the WMLTP method on the 66-day long 2010 SOHO/MDI Dynamics Run. To improve both the numerical stability and reliability of the inversion we developed a new procedure for the identification and correction of outliers in a frequency data set. We present evidence for a pronounced departure of the sound speed in the outer half of the solar convection zone and in the subsurface shear layer from the radial sound speed profile contained in Model~S of Christensen-Dalsgaard and his collaborators that existed in the rising phase of Solar Cycle~24 during mid-2010

    Fingerprinting Soft Materials: A Framework for Characterizing Nonlinear Viscoelasticity

    Full text link
    We introduce a comprehensive scheme to physically quantify both viscous and elastic rheological nonlinearities simultaneously, using an imposed large amplitude oscillatory shear (LAOS) strain. The new framework naturally lends a physical interpretation to commonly reported Fourier coefficients of the nonlinear stress response. Additionally, we address the ambiguities inherent in the standard definitions of viscoelastic moduli when extended into the nonlinear regime, and define new measures which reveal behavior that is obscured by conventional techniques.Comment: 10 pages, 3 figures, full-page double-space preprint forma

    Unconventional magnets in external magnetic fields

    Full text link
    This short review surveys phenomena observed when a magnetic field is applied to a system of localised spins on a lattice. Its focus is on frustrated magnets in dimension d≥2d \geq 2. The interplay of field and entropy is illustrated in the context of their unusual magnetocaloric properties, where field-tuned degeneracies assert themselves. Magnetisation plateaux can reveal the physics of fluctuations, with unusual excitations (such as local modes, extended string defects or monopoles) involved in plateau termination. Field-tuning lattice geometry is the final topic, where mechanisms for dimensional reduction and conversion between different lattice types are discussed.Comment: Plenary Talk at HFM 2008 Conferenc

    Analytical theory for the initial mass function: CO clumps and prestellar cores

    Full text link
    We derive an analytical theory of the prestellar core initial mass function based on an extension of the Press-Schechter statistical formalism. With the same formalism, we also obtain the mass spectrum for the non self-gravitating clumps produced in supersonic flows. The mass spectrum of the self-gravitating cores reproduces very well the observed initial mass function and identifies the different mechanisms responsible for its behaviour. The theory predicts that the shape of the IMF results from two competing contributions, namely a power-law at large scales and an exponential cut-off (lognormal form) centered around the characteristic mass for gravitational collapse. The cut-off exists already in the case of pure thermal collapse, provided that the underlying density field has a lognormal distribution. Whereas pure thermal collapse produces a power-law tail steeper than the Salpeter value, dN/dlog M\propto M^{-x}, with x=1.35, this latter is recovered exactly for the (3D) value of the spectral index of the velocity power spectrum, n\simeq 3.8, found in observations and in numerical simulations of isothermal supersonic turbulence. Indeed, the theory predicts that x=(n+1)/(2n-4) for self-gravitating structures and x=2-n'/3 for non self-gravitating structures, where n' is the power spectrum index of log(rho). We show that, whereas supersonic turbulence promotes the formation of both massive stars and brown dwarfs, it has an overall negative impact on star formation, decreasing the star formation efficiency. This theory provides a novel theoretical foundation to understand the origin of the IMF and to infer its behaviour in different environments. It also provides a complementary approach and useful guidance to numerical simulations exploring star formation, while making testable predictions.Comment: To appear in Ap

    High-pressure study of substrate material ScAlMgO4

    Full text link
    We report on the structural properties of ScAlMgO4 studied under quasi-hydrostatic pressure using synchrotron high-pressure x-ray diffraction up to 40 GPa. We also report on single-crystal studies of ScAlMgO4 performed at 300 K and 100 K. We found that the low-pressure phase remains stable up to 24 GPa. At 28 GPa, we detected a reversible phase transformation. The high-pressure phase is assigned to a monoclinic distortion of the low-pressure phase. No additional phase transition is observed up to 40 GPa. In addition, the equation of state, compressibility tensor, and thermal expansion coefficients of ScAlMgO4 are determined. The bulk modulus of ScAlMgO4 is found to be 143(8) GPa, with a strong compressibility anisotropy. For the trigonal low-pressure phase, the compressibility along the c-axis is twice than perpendicular one. A perfect lattice match with ZnO is retained under pressure in the pressure range of stability of wurtzite ZnO.Comment: 22 pages, 5 figures, 4 tables, 24 reference

    Nonlinear propagation of planet-generated tidal waves

    Get PDF
    The propagation and evolution of planet-generated density waves in protoplanetary disks is considered. The evolution of waves, leading to the shock formation and wake dissipation, is followed in the weakly nonlinear regime. The local approach of Goodman & Rafikov (2001) is extended to include the effects of surface density and temperature variations in the disk as well as the disk cylindrical geometry and nonuniform shear. Wave damping due to shocks is demonstrated to be a nonlocal process spanning a significant fraction of the disk. Torques induced by the planet could be significant drivers of disk evolution on timescales of the order 1-10 Myr even in the absence of strong background viscosity. A global prescription for angular momentum deposition is developed which could be incorporated into the study of gap formation in a gaseous disk around the planet.Comment: AASTeX, 26 pages, 4 figures, 1 table, submitted to Ap
    • …
    corecore