14,928 research outputs found

    DISTANCE EDUCATION IN AGRICULTURAL ECONOMICS: AN ASSESSMENT OF STUDENT ACCEPTANCE AND PERFORMANCE.

    Get PDF
    This paper reports an analysis of student evaluation of and performance in three agricultural economics classes offered at distance by audio-visual connection in real time. Multiple regression analyses of student questionnaire data are used to examine the relationship between student attributes and their evaluation of and performance in the distance-offered course.Teaching/Communication/Extension/Profession,

    Thermomagnetic analysis of meteorites, 2: C2 chondrites

    Get PDF
    Samples of all eighteen of the known C2 chondrites were analyzed thermomagnetically. For eleven of these, initial Fe3O4 content is low(generally 1%) and the J sub s-T curves are irreversible. The heating curves show variable and erratic behavior, whereas the cooling curves appear to be that of Fe3O4. The saturation moment after cooling is greater (up to 10 times larger) than it is initially. This behavior is interpreted to be the result of the production of magnetite from a thermally unstable phase--apparently FeS. Four of the remaining 7 C2 chondrites contain Fe3O4 as the only significant magnetic phase: initial magnetite contents range from 4 to 13 percent. The remaining three C2 chondrites contain iron or nickel-iron in addition to Fe3O4. These seven C2 chondrites show little evidence of the breakdown of a thermally unstable phase

    Thermomagnetic analysis of meterorites. 4: Ureilites

    Get PDF
    Samples of all available ureilites have been analyzed thermomagnetically. For three of the six (Dyalpur, Goalpara and Havero) evidence was found for only low-nickel metallic-iron as the magnetic component and the (saturation magnetization vs, temperature) curves were reversible. In the Novo Urei ureilite, magnetite in addition to low-nickel metallic-iron was indicated and again the Js-T curve was reversible. For the two badly weathered ureilites, Dingo Pup Donga and North Haig, indication was also found that both initial magnetite and low-nickel metallic-iron were present. However, the Js-T curves were somewhat irreversible and the final saturation magnetization was 20% and 50% greater than initially for North Haig and Dingo Pup Donga, respectively. This behavior is interpreted to be the result of magnetite production from a secondary iron oxide during the experiment

    Loading of bosons in optical lattices into the p band

    Full text link
    We present a method for transferring bosonic atoms residing on the lowest s-band of an optical lattice to the first excited p-bands. Our idea hinges on resonant tunneling between adjacent sites of accelerated lattices. The acceleration effectively shifts the quasi-bound energies on each site such that the system can be cast into a Wannier-Stark ladder problem. By adjusting the acceleration constant, a situation of resonant tunneling between the s- and p-bands is achievable. Within a mean-field model, considering 87Rb atoms, we demonstrate population transfer from the s- to the p-bands with around 95 % efficiency. Nonlinear effects deriving from atom-atom interactions, as well as coupling of the quasi bound Wannier-Stark states to the continuum, are considered.Comment: 8 pages, 7 figure

    Research of metal solidification in zero-g state

    Get PDF
    An experiment test apparatus that allows metal melting and resolidification in the three seconds available during free fall in a drop tower was built and tested in the tower. Droplets (approximately 0.05 cm) of pure nickel and 1090 steel were prepared in this fashion. The apparatus, including instrumentation, is described. As part of the instrumentation, a method for measuring temperature-time histories of the free floating metal droplets was developed. Finally, a metallurgical analysis of the specimens prepared in the apparatus is presented

    Suprathermal electron isotropy in high-beta solar wind and its role in heat flux dropouts

    Get PDF
    [1] Time variations in plasma beta and a parameter which measures isotropy in suprathermal electron pitch angle distributions show a remarkably close correspondence throughout the solar wind. The finding implies that high-beta plasma, with its multiple magnetic holes and sharp field and plasma gradients, is conducive to electron pitch-angle scattering, which reduces heat flux from the Sun without field-line disconnection. Thus the finding impacts our understanding of signatures we use to determine magnetic topology in the heliosphere

    A Relativistic Version of the Two-Level Atom in the Rest-Frame Instant Form of Dynamics

    Full text link
    We define a relativistic version of the two-level atom, in which an extended atom is replaced by a point particle carrying suitable Grassmann variables for the description of the two-level structure and of the electric dipole. After studying the isolated system "atom plus the electro-magnetic field" in the electric-dipole representation as a parametrized Minkowski theory, we give its restriction to the inertial rest frame and the explicit form of the Poincar\'e generators. After quantization we get a two-level atom with a spin 1/2 electric dipole and the relativistic generalization of the Hamiltonians of the Rabi and Jaynes-Cummings models.Comment: 23 page

    Heliospheric plasma sheets

    Get PDF
    [1] As a high-beta feature on scales of hours or less, the heliospheric plasma sheet (HPS) encasing the heliospheric current sheet shows a high degree of variability. A study of 52 sector boundaries identified in electron pitch angle spectrograms in Wind data from 1995 reveals that only half concur with both high-beta plasma and current sheets, as required for an HPS. The remaining half lack either a plasma sheet or current sheet or both. A complementary study of 37 high-beta events reveals that only 5 contain sector boundaries while nearly all (34) contain local magnetic field reversals, however brief. We conclude that high-beta plasma sheets surround current sheets but that most of these current sheets are associated with fields turned back on themselves. The findings are consistent with the hypothesis that high-beta plasma sheets, both at and away from sector boundaries, are the heliospheric counterparts of the small coronal transients observed at the tips of helmet streamers, in which case the proposed mechanism for their release, interchange reconnection, could be responsible for the field inversions
    corecore