1,097 research outputs found
Self-assembly of Microcapsules via Colloidal Bond Hybridization and Anisotropy
Particles with directional interactions are promising building blocks for new
functional materials and may serve as models for biological structures.
Mutually attractive nanoparticles that are deformable due to flexible surface
groups, for example, may spontaneously order themselves into strings, sheets
and large vesicles. Furthermore, anisotropic colloids with attractive patches
can self-assemble into open lattices and colloidal equivalents of molecules and
micelles. However, model systems that combine mutual attraction, anisotropy,
and deformability have---to the best of our knowledge---not been realized.
Here, we synthesize colloidal particles that combine these three
characteristics and obtain self-assembled microcapsules. We propose that mutual
attraction and deformability induce directional interactions via colloidal bond
hybridization. Our particles contain both mutually attractive and repulsive
surface groups that are flexible. Analogous to the simplest chemical bond,
where two isotropic orbitals hybridize into the molecular orbital of H2, these
flexible groups redistribute upon binding. Via colloidal bond hybridization,
isotropic spheres self-assemble into planar monolayers, while anisotropic
snowman-like particles self-assemble into hollow monolayer microcapsules. A
modest change of the building blocks thus results in a significant leap in the
complexity of the self-assembled structures. In other words, these relatively
simple building blocks self-assemble into dramatically more complex structures
than similar particles that are isotropic or non-deformable
Theory of Star Formation
We review current understanding of star formation, outlining an overall
theoretical framework and the observations that motivate it. A conception of
star formation has emerged in which turbulence plays a dual role, both creating
overdensities to initiate gravitational contraction or collapse, and countering
the effects of gravity in these overdense regions. The key dynamical processes
involved in star formation -- turbulence, magnetic fields, and self-gravity --
are highly nonlinear and multidimensional. Physical arguments are used to
identify and explain the features and scalings involved in star formation, and
results from numerical simulations are used to quantify these effects. We
divide star formation into large-scale and small-scale regimes and review each
in turn. Large scales range from galaxies to giant molecular clouds (GMCs) and
their substructures. Important problems include how GMCs form and evolve, what
determines the star formation rate (SFR), and what determines the initial mass
function (IMF). Small scales range from dense cores to the protostellar systems
they beget. We discuss formation of both low- and high-mass stars, including
ongoing accretion. The development of winds and outflows is increasingly well
understood, as are the mechanisms governing angular momentum transport in
disks. Although outstanding questions remain, the framework is now in place to
build a comprehensive theory of star formation that will be tested by the next
generation of telescopes.Comment: 120 pages, to appear in ARAA. No changes from v1 text; permission
statement adde
The Peter Pan paradigm
Genetic and environmental agents that disrupt organogenesis are numerous and well described. Less well established, however, is the role of delay in the developmental processes that yield functionally immature tissues at birth. Evidence is mounting that organs do not continue to develop postnatally in the context of these organogenesis insults, condemning the patient to utilize under-developed tissues for adult processes. These poorly differentiated organs may appear histologically normal at birth but with age may deteriorate revealing progressive or adult-onset pathology. The genetic and molecular underpinning of the proposed paradigm reveals the need for a comprehensive systems biology approach to evaluate the role of maternal-fetal environment on organogenesis
Physics of Neutron Star Crusts
The physics of neutron star crusts is vast, involving many different research
fields, from nuclear and condensed matter physics to general relativity. This
review summarizes the progress, which has been achieved over the last few
years, in modeling neutron star crusts, both at the microscopic and macroscopic
levels. The confrontation of these theoretical models with observations is also
briefly discussed.Comment: 182 pages, published version available at
<http://www.livingreviews.org/lrr-2008-10
Surveying uveitis specialistsâa call for consensus
Thomas Brennan became disillusioned with popular law school rankings and so decided to survey 100 academics, judges, and lawyers on his own, asking them to rank a list of ten schools he provided. He used a composite index similar in structure, but different in content, to those used by main-stream surveyors, such as U.S. News & World Report. As expected, many of the big name schoolsâHarvard, Yale, Stanfordâmade it to the top of the list. Penn State, as Brennan recalled, â[Was] about in the middle of the pack. Maybe fifth among the 10 schools listed. â There was one small problem, however. Penn State had no law school at the time. Brennan had included it to make a point: surveys are limited by both the quality of the questions asked and by how familiar respondents are with the subject being surveyed [1, 2]
PHANGS-JWST First Results: Mapping the 3.3 ÎŒm Polycyclic Aromatic Hydrocarbon Vibrational Band in Nearby Galaxies with NIRCam Medium Bands
We present maps of the 3.3 mu m polycyclic aromatic hydrocarbon (PAH) emission feature in NGC 628, NGC 1365, and NGC 7496 as observed with the Near-Infrared Camera imager on JWST from the PHANGS-JWST Cycle 1 Treasury project. We create maps that isolate the 3.3 mu m PAH feature in the F335M filter (F335M(PAH)) using combinations of the F300M and F360M filters for removal of starlight continuum. This continuum removal is complicated by contamination of the F360M by PAH emission and variations in the stellar spectral energy distribution slopes between 3.0 and 3.6 mu m. We modify the empirical prescription from Lai et al. to remove the starlight continuum in our highly resolved galaxies, which have a range of starlight- and PAH-dominated lines of sight. Analyzing radially binned profiles of the F335M(PAH) emission, we find that between 5% and 65% of the F335M intensity comes from the 3.3 mu m feature within the inner 0.5 r (25) of our targets. This percentage systematically varies from galaxy to galaxy and shows radial trends within the galaxies related to each galaxy's distribution of stellar mass, interstellar medium, and star formation. The 3.3 mu m emission is well correlated with the 11.3 mu m PAH feature traced with the MIRI F1130W filter, as is expected, since both features arise from C-H vibrational modes. The average F335M(PAH)/F1130W ratio agrees with the predictions of recent models by Draine et al. for PAHs with size and charge distributions shifted toward larger grains with normal or higher ionization
Quantitative imaging of concentrated suspensions under flow
We review recent advances in imaging the flow of concentrated suspensions,
focussing on the use of confocal microscopy to obtain time-resolved information
on the single-particle level in these systems. After motivating the need for
quantitative (confocal) imaging in suspension rheology, we briefly describe the
particles, sample environments, microscopy tools and analysis algorithms needed
to perform this kind of experiments. The second part of the review focusses on
microscopic aspects of the flow of concentrated model hard-sphere-like
suspensions, and the relation to non-linear rheological phenomena such as
yielding, shear localization, wall slip and shear-induced ordering. Both
Brownian and non-Brownian systems will be described. We show how quantitative
imaging can improve our understanding of the connection between microscopic
dynamics and bulk flow.Comment: Review on imaging hard-sphere suspensions, incl summary of
methodology. Submitted for special volume 'High Solid Dispersions' ed. M.
Cloitre, Vol. xx of 'Advances and Polymer Science' (Springer, Berlin, 2009);
22 pages, 16 fig
Association between regular participation in sports and leisure time behaviors in Brazilian adolescents: A cross-sectional study
<p>Abstract</p> <p>Background</p> <p>The belief that adolescents engaged in sports increase their overall physical activity level while simultaneously decreasing physical inactivity has been the foundation of many intervention programs in developing countries. The aim of this study was to analyze the association between regular participation in sports and both active behaviors and TV viewing during leisure time.</p> <p>Methods</p> <p>A total of 1752 Brazilian adolescents (812 = male and 940 = female) participated in this study. Regular participation in sports, as well as active behaviors (exemplified by walking or cycling) and TV viewing during leisure time were assessed by means of a questionnaire. The chi-square test analyzed the association between sports practice and leisure time behaviors, and the Poisson regression with robust variance indicated the magnitude of these associations.</p> <p>Results</p> <p>The prevalence of regular participation in sports was 14.8% (95% confidence interval 13.2% to 16.5%). After adjustment for all confounders, participation in sports was associated with, at the highest frequency, cycling (PR = 2.55 [1.80â3.60]) and walking (PR = 2.69 [1.98â3.64]) during leisure time. However, there was not an association between the participation in sports and frequency of TV viewing (PR = 1.28 [0.81â2.02]).</p> <p>Conclusion</p> <p>This study presented data indicating that the regular participation in sports is positively associated with a higher frequency of physically active behaviors during leisure time. However, the results did not support the hypothesis that the engagement in sports necessarily decreases leisure time spent in TV viewing.</p
Verbal thinking and inner speech use in autism spectrum disorder
The extent to which cognition is verbally mediated in neurotypical individuals is the subject of debate in cognitive neuropsychology, as well as philosophy and psychology. Studying âverbal thinkingâ in developmental/neuropsychological disorders provides a valuable opportunity to inform theory building, as well as clinical practice. In this paper, we provide a comprehensive, critical review of such studies among individuals with autism spectrum disorder (ASD). ASD involves severe social-communication deficits and limitations in cognitive/behavioural flexibility. The prevailing view in the field is that neither cognition nor behaviour is mediated verbally in ASD, and that this contributes to diagnostic features. However, our review suggests that, on the contrary, most studies to date actually find that among people with ASD cognitive task performance is either a) mediated verbally in a typical fashion, or b) not mediated verbally, but at no obvious cost to overall task performance. Overall though, these studies have methodological limitations and thus clear-cut conclusions are not possible at this stage. The aim of the review is to take stock of existing empirical findings, as well as to help develop the directions for future research that will resolve the many outstanding issues in this field
- âŠ