7,947 research outputs found

    Braess's Paradox for Flows Over Time

    Full text link
    We study the properties of Braess's paradox in the context of the model of congestion games with flow over time introduced by Koch and Skutella. We compare them to the well known properties of Braess's paradox for Wardrop's model of games with static flows. We show that there are networks which do not admit Braess's paradox in Wardrop's model, but which admit it in the model with flow over time. Moreover, there is a topology that admits a much more severe Braess's ratio for this model. Further, despite its symmetry for games with static flow, we show that Braess's paradox is not symmetric for flows over time. We illustrate that there are network topologies which exhibit Braess's paradox, but for which the transpose does not. Finally, we conjecture a necessary and sufficient condition of existence of Braess's paradox in a network, and prove the condition of existence of the paradox either in the network or in its transpose.Comment: 19 pages, 6 figures, an extended version of paper accepted for SAGT 201

    Properties of Galactic Outflows: Measurements of the Feedback from Star Formation

    Full text link
    Properties of starburst-driven outflows in dwarf galaxies are compared to those in more massive galaxies. Over a factor of roughly 10 in galactic rotation speed, supershells are shown to lift warm ionized gas out of the disk at rates up to several times the star formation rate. The amount of mass escaping the galactic potential, in contrast to the disk, does depend on the galactic mass. The temperature of the hottest extended \x emission shows little variation around 106.7\sim 10^{6.7} K, and this gas has enough energy to escape from the galaxies with rotation speed less than approximately 130 km/s.Comment: 11 pages + 3 figues. Accepted for publication in the Astrophysical Journa

    ‘Smart Cities’ – Dynamic Sustainability Issues and Challenges for ‘Old World’ Economies: A Case from the United Kingdom

    Get PDF
    The rapid and dynamic rate of urbanization, particularly in emerging world economies, has resulted in a need to find sustainable ways of dealing with the excessive strains and pressures that come to bear on existing infrastructures and relationships. Increasingly during the twenty-first century policy makers have turned to technological solutions to deal with this challenge and the dynamics inherent within it. This move towards the utilization of technology to underpin infrastructure has led to the emergence of the term ‘Smart City’. Smart cities incorporate technology based solutions in their planning development and operation. This paper explores the organizational issues and challenges facing a post-industrial agglomeration in the North West of England as it attempted to become a ‘Smart City’. In particular the paper identifies and discusses the factors that posed significant challenges for the dynamic relationships residents, policymakers and public and private sector organizations and as a result aims to use these micro-level issues to inform the macro-debate and context of wider Smart City discussions. In order to achieve this, the paper develops a range of recommendations that are designed to inform Smart City design, planning and implementation strategies

    Genome-wide association study of electrocardiographic and heart rate variability traits: the Framingham Heart Study

    Get PDF
    BACKGROUND: Heritable electrocardiographic (ECG) and heart rate variability (HRV) measures, reflecting pacemaking, conduction, repolarization and autonomic function in the heart have been associated with risks for cardiac arrhythmias. Whereas several rare monogenic conditions with extreme phenotypes have been noted, few common genetic factors contributing to interindividual variability in ECG and HRV measures have been identified. We report the results of a community-based genomewide association study of six ECG and HRV intermediate traits. METHODS: Genotyping using Affymetrix 100K GeneChip was conducted on 1345 related Framingham Heart Study Original and Offspring cohort participants. We analyzed 1175 Original and Offspring participants with ECG data (mean age 52 years, 52% women) and 548 Offspring participants with HRV data (mean age 48 years, 51% women), in relation to 70,987 SNPs with minor allele frequency ≥ 0.10, call rate ≥ 80%, Hardy-Weinberg p-value ≥ 0.001. We used generalized estimating equations to test association of SNP alleles with multivariable-adjusted residuals for QT, RR, and PR intervals, the ratio of low frequency to high frequency power (LF/HFP), total power (TP) and the standard deviation of normal RR intervals (SDNN). RESULTS: Associations at p < 10-3 were found for 117 (QT), 105 (RR), 111 (PR), 102 (LF/HF), 121 (TP), and 102 (SDNN) SNPs. Several common variants in NOS1AP (4 SNPs with p-values < 10-3; lowest p-value, rs6683968, p = 1 × 10-4) were associated with adjusted QT residuals, consistent with our previously reported finding for NOS1AP in an unrelated sample of FHS Offspring and other cohorts. All results are publicly available at NCBI's dbGaP at. CONCLUSION: In the community-based Framingham Heart Study none of the ECG and HRV results individually attained genomewide significance. However, the presence of bona fide QT-associated SNPs among the top 117 results for QT duration supports the importance of efforts to validate top results from the reported scans. Finding genetic variants associated with ECG and HRV quantitative traits may identify novel genes and pathways implicated in arrhythmogenesis and allow for improved recognition of individuals at high risk for arrhythmias in the general population.National Institutes of Health (K23 N01-HC25195); Doris Duke Charitable Foundation Clinical Scientist Developement Award; Pfizer; National Institutes of Health National Center for Research Resources Shared Instrumentation grant (1S10RR163736-01A1

    Nonlinear Hydromagnetic Wave Support of a Stratified Molecular Cloud

    Full text link
    We perform numerical simulations of nonlinear MHD waves in a gravitationally stratified molecular cloud that is bounded by a hot and tenuous external medium. We study the relation between the strength of the turbulence and various global properties of a molecular cloud, within a 1.5-dimensional approximation. Under the influence of a driving source of Alfvenic disturbances, the cloud is lifted up by the pressure of MHD waves and reaches a steady-state characterized by oscillations about a new time-averaged equilibrium state. The nonlinear effect results in the generation of longitudinal motions and many shock waves; however, the wave kinetic energy remains predominantly in transverse, rather than longitudinal, motions. There is an approximate equipartition of energy between the transverse velocity and fluctuating magnetic field (aspredicted by small-amplitude theory) in the region of the stratified cloud which contains most of the mass; however, this relation breaks down in the outer regions, particularly near the cloud surface, where the motions have a standing-wave character. This means that the Chandrasekhar-Fermi formula applied to molecular clouds must be significantly modified in such regions. Models of an ensemble of clouds show that, for various strengths of the input energy, the velocity dispersion in the cloud σZ0.5\sigma \propto Z^{0.5}, where ZZ is a characteristic size of the cloud.Furthermore, σ\sigma is always comparable to the mean Alfven velocity of the cloud, consistent with observational results.Comment: 16 pages, 15 figures, emulateapj, to appear in ApJ, 2003 Oct 1, higher resolution figures at http://www.astro.uwo.ca/~basu/pub.html or http://www.astro.uwo.ca/~kudoh/pub.htm

    Flows, Fragmentation, and Star Formation. I. Low-mass Stars in Taurus

    Full text link
    The remarkably filamentary spatial distribution of young stars in the Taurus molecular cloud has significant implications for understanding low-mass star formation in relatively quiescent conditions. The large scale and regular spacing of the filaments suggests that small-scale turbulence is of limited importance, which could be consistent with driving on large scales by flows which produced the cloud. The small spatial dispersion of stars from gaseous filaments indicates that the low-mass stars are generally born with small velocity dispersions relative to their natal gas, of order the sound speed or less. The spatial distribution of the stars exhibits a mean separation of about 0.25 pc, comparable to the estimated Jeans length in the densest gaseous filaments, and is consistent with roughly uniform density along the filaments. The efficiency of star formation in filaments is much higher than elsewhere, with an associated higher frequency of protostars and accreting T Tauri stars. The protostellar cores generally are aligned with the filaments, suggesting that they are produced by gravitational fragmentation, resulting in initially quasi-prolate cores. Given the absence of massive stars which could strongly dominate cloud dynamics, Taurus provides important tests of theories of dispersed low-mass star formation and numerical simulations of molecular cloud structure and evolution.Comment: 32 pages, 9 figures: to appear in Ap

    Factors Influencing the Selection of Precision Farming Information Sources by Cotton Producers

    Get PDF
    Precision farming information demanded by cotton producers is provided by various suppliers, including consultants, farm input dealerships, University Extension systems, and media sources. Factors associated with the decisions to select among information sources to search for precision farming information are analyzed using a multivariate probit regression accounting for correlation among the different selection decisions. Factors influencing these decisions are age, education, and income. These findings should be valuable to precision farming information providers who may be able to better meet their target clientele needs.Extension, information-source-use decisions, media, multivariate probit, precision agriculture technologies, private sources, Farm Management, Teaching/Communication/Extension/Profession,

    Turbulent Cooling Flows in Molecular Clouds

    Get PDF
    We propose that inward, subsonic flows arise from the local dissipation of turbulent motions in molecular clouds. Such "turbulent cooling flows" may account for recent observations of spatially extended inward motions towards dense cores. These pressure-driven flows may arise from various types of turbulence and dissipation mechanisms. For the example of MHD waves and turbulence damped by ion-neutral friction, sustained cooling flow requires that the outer gas be sufficiently turbulent, that the inner gas have marginal field-neutral coupling, and that this coupling decrease sufficiently rapidly with increasing density. These conditions are most likely met at the transition between outer regions ionized primarily by UV photons and inner regions ionized primarily by cosmic rays. If so, turbulent cooling flows can help form dense cores, with speeds faster than expected for ambipolar diffusion. Such motions could reduce the time needed for dense core formation and could precede and enhance the motions of star-forming gravitational infall.Comment: To appear ApJL, Nov.10, 4 ApJ style pages, Postscrip

    Factors Influencing Selection of Information Sources by Cotton Producers Considering Adoption of Precision Agriculture Technologies

    Get PDF
    Acknowledgements: The authors thank Cotton Incorporated and the Tennessee Agricultural Experiment Station for financial supportInformation source use decisions, Precision Agriculture Technologies, Extension, Media, Private sources, Multivariate Probit, Teaching/Communication/Extension/Profession, Q12, Q16,
    corecore