We propose that inward, subsonic flows arise from the local dissipation of
turbulent motions in molecular clouds. Such "turbulent cooling flows" may
account for recent observations of spatially extended inward motions towards
dense cores. These pressure-driven flows may arise from various types of
turbulence and dissipation mechanisms. For the example of MHD waves and
turbulence damped by ion-neutral friction, sustained cooling flow requires that
the outer gas be sufficiently turbulent, that the inner gas have marginal
field-neutral coupling, and that this coupling decrease sufficiently rapidly
with increasing density. These conditions are most likely met at the transition
between outer regions ionized primarily by UV photons and inner regions ionized
primarily by cosmic rays. If so, turbulent cooling flows can help form dense
cores, with speeds faster than expected for ambipolar diffusion. Such motions
could reduce the time needed for dense core formation and could precede and
enhance the motions of star-forming gravitational infall.Comment: To appear ApJL, Nov.10, 4 ApJ style pages, Postscrip