18,139 research outputs found

    Manganese-56 coincidence-counting facility precisely measures neutron-source strength

    Get PDF
    Precise measurement of neutron-source strength is provided by a manganese 56 coincidence-counting facility using the manganese-bath technique. This facility combines nuclear instrumentation with coincidence-counting techniques to handle a wide variety of radioisotope-counting requirements

    Approximate Range Emptiness in Constant Time and Optimal Space

    No full text
    This paper studies the \emph{ε\varepsilon-approximate range emptiness} problem, where the task is to represent a set SS of nn points from {0,,U1}\{0,\ldots,U-1\} and answer emptiness queries of the form "[a;b]S[a ; b]\cap S \neq \emptyset ?" with a probability of \emph{false positives} allowed. This generalizes the functionality of \emph{Bloom filters} from single point queries to any interval length LL. Setting the false positive rate to ε/L\varepsilon/L and performing LL queries, Bloom filters yield a solution to this problem with space O(nlg(L/ε))O(n \lg(L/\varepsilon)) bits, false positive probability bounded by ε\varepsilon for intervals of length up to LL, using query time O(Llg(L/ε))O(L \lg(L/\varepsilon)). Our first contribution is to show that the space/error trade-off cannot be improved asymptotically: Any data structure for answering approximate range emptiness queries on intervals of length up to LL with false positive probability ε\varepsilon, must use space Ω(nlg(L/ε))O(n)\Omega(n \lg(L/\varepsilon)) - O(n) bits. On the positive side we show that the query time can be improved greatly, to constant time, while matching our space lower bound up to a lower order additive term. This result is achieved through a succinct data structure for (non-approximate 1d) range emptiness/reporting queries, which may be of independent interest

    Monitoring of the prompt radio emission from the unusual supernova 2004dj in NGC2403

    Full text link
    Supernova 2004dj in the nearby spiral galaxy NGC2403 was detected optically in July 2004. Peaking at a magnitude of 11.2, this is the brightest supernova detected for several years. Here we present Multi-Element Radio Linked Interferometer Network (MERLIN) observations of this source, made over a four month period, which give a position of R.A. = 07h37m17.044s, Dec =+65deg35'57.84" (J2000.0). We also present a well-sampled 5 GHz light curve covering the period from 5 August to 2 December 2004. With the exception of the unusual and very close SN 1987A, these observations represent the first detailed radio light curve for the prompt emission from a Type II-P supernova.Comment: (1) Jodrell Bank Observatory (2) University of Valencia (3) University of Sheffield 6 pages, 1 figure. To appear in ApJ letter

    Stable and Unstable Circular Strings in Inflationary Universes

    Full text link
    It was shown by Garriga and Vilenkin that the circular shape of nucleated cosmic strings, of zero loop-energy in de Sitter space, is stable in the sense that the ratio of the mean fluctuation amplitude to the loop radius is constant. This result can be generalized to all expanding strings (of non-zero loop-energy) in de Sitter space. In other curved spacetimes the situation, however, may be different. In this paper we develop a general formalism treating fluctuations around circular strings embedded in arbitrary spatially flat FRW spacetimes. As examples we consider Minkowski space, de Sitter space and power law expanding universes. In the special case of power law inflation we find that in certain cases the fluctuations grow much slower that the radius of the underlying unperturbed circular string. The inflation of the universe thus tends to wash out the fluctuations and to stabilize these strings.Comment: 15 pages Latex, NORDITA 94/14-

    DGNB building certification companion: Sustainability Tool for Assessment, Planning, Learning, and Engaging (STAPLE)

    Get PDF
    In the construction industry, the popularity of sustainability and its benefits have been on the rise in recent years. Alas, with various building sustainability assessment schemes on the market, there is still no single general method for a comprehensive and inclusive design and building process for sustainable buildings. The literature describes several barriers of entry preventing actors in the industry from seeking sustainability certifications and prioritizing design methods, supporting sustainability in greater numbers. In the newly developed tool, “DGNB building certification companion: Sustainable Tool for Assessment, Planning, Learning, and Engaging (STAPLE)”, a new Excel-based, interactive, and iterative education focused platform is introduced, intended to engage dialog among stakeholders, building owners, and decision makers, and the assigned group team leaders, based on the five DGNB topics. In order to establish common levels of knowledge, terminology, and understanding for proper interdisciplinary discussions, which would result in suitable and timely decisions, personal and professional development is enabled by imbedded educational documents in multiple formats throughout the tool as plain-language, easily digestible summaries of various topics regarding sustainability and the DGNB certification scheme. The identified barriers are described in the tool followed by a solution to overcome them. The tool, tested at multiple stages of development and moulded by many individuals both within and outside of the sustainable building industry, has shown to achieve the primary goals of assessment of individual’s current knowledge, educating through multiple stages and formats, and the inspiring of conversation among team members through a graphical display of opinions. Based on user feedback, the conclusion was that this is a desired product on the market. This new approach is expected to dramatically reduce misunderstandings, conflicts, and mistakes during a sustainable design process, helping the design team plan a project to possibly obtain the highest DGNB score if desired and properly documented

    Exact Microscopic Entropy of Non-Supersymmetric Extremal Black Rings

    Full text link
    In this brief note we show that the horizon entropy of the largest known class of non-supersymmetric extremal black rings, with up to six parameters, is exactly reproduced for all values of the ring radius using the same conformal field theory of the four-charge four-dimensional black hole. A particularly simple case is a dipole black ring without any conserved charges. The mass gets renormalized, but the first corrections it receives can be easily understood as an interaction potential energy. Finally, we stress that even if the entropy is correctly reproduced, this only implies that one sector of chiral excitations has been identified, but an understanding of excitations in the other sector is still required in order to capture the black ring dynamics.Comment: 7 pages. v2: minor improvements, ref adde

    A New Measurement of Cosmic Ray Composition at the Knee

    Full text link
    The Dual Imaging Cerenkov Experiment (DICE) was designed and operated for making elemental composition measurements of cosmic rays near the knee of the spectrum at several PeV. Here we present the first results using this experiment from the measurement of the average location of the depth of shower maximum, , in the atmosphere as a function of particle energy. The value of near the instrument threshold of ~0.1 PeV is consistent with expectations from previous direct measurements. At higher energies there is little change in composition up to ~5 PeV. Above this energy is deeper than expected for a constant elemental composition implying the overall elemental composition is becoming lighter above the knee region. These results disagree with the idea that cosmic rays should become on average heavier above the knee. Instead they suggest a transition to a qualitatively different population of particles above 5 PeV.Comment: 7 pages, LaTeX, two eps figures, aas2pp4.sty and epsf.sty included, accepted by Ap.J. Let

    The Holographic Universe

    Get PDF
    We present a holographic description of four-dimensional single-scalar inflationary universes in terms of a three-dimensional quantum field theory. The holographic description correctly reproduces standard inflationary predictions in their regime of applicability. In the opposite case, wherein gravity is strongly coupled at early times, we propose a holographic description in terms of perturbative QFT and present models capable of satisfying the current observational constraints while exhibiting a phenomenology distinct from standard inflation. This provides a qualitatively new method for generating a nearly scale-invariant spectrum of primordial cosmological perturbations.Comment: 20 pages, 5 figs; extended version of arXiv:0907.5542 including background material and detailed derivations. To appear in Proceedings of 1st Mediterranean Conference on Classical and Quantum Gravit
    corecore