224 research outputs found

    Nicotine enhances murine airway contractile responses to kinin receptor agonists via activation of JNK- and PDE4-related intracellular pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nicotine plays an important role in cigarette-smoke-associated airway disease. The present study was designed to examine if nicotine could induce airway hyperresponsiveness through kinin receptors, and if so, explore the underlying mechanisms involved.</p> <p>Methods</p> <p>Murine tracheal segments were cultured for 1, 2 or 4 days in serum-free DMEM medium in presence of nicotine (1 and 10 μM) or vehicle (DMSO). Contractile responses induced by kinin B<sub>1 </sub>receptor agonist, des-Arg<sup>9</sup>-bradykinin, and B<sub>2 </sub>receptor agonist, bradykinin, were monitored with myographs. The B<sub>1 </sub>and B<sub>2 </sub>receptor mRNA expressions were semi-quantified using real-time PCR and their corresponding protein expressions assessed with confocal-microscopy-based immunohistochemistry. Various pharmacological inhibitors were used for studying intracellular signaling pathways.</p> <p>Results</p> <p>Four days of organ culture with nicotine concentration-dependently increased kinin B<sub>1 </sub>and B<sub>2 </sub>receptor-mediated airway contractions, without altering the kinin receptor-mediated relaxations. No such increase was seen at day 1 or day 2. The airway contractile responses to 5-HT, acetylcholine and endothelin receptor agonists remained unaffected by nicotine. Two different neuronal nicotinic receptor antagonists MG624 and hexamethonium blocked the nicotine-induced effects. The enhanced contractile responses were accompanied by increased mRNA and protein expression for both kinin receptors, suggesting the involvement of transcriptional mechanisms. Confocal-microscopy-based immunohistochemistry showed that 4 days of nicotine treatment induced activation (phosphorylation) of c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase 1 and 2 (ERK1/2) and p38. Inhibition of JNK with its specific inhibitor SP600125 abolished the nicotine-induced effects on kinin receptor-mediated contractions and reverted the enhanced receptor mRNA expression. Administration of phosphodiesterase inhibitors (YM976 and theophylline), glucocorticoid (dexamethasone) or adenylcyclase activator (forskolin) suppressed the nicotine-enhanced airway contractile response to des-Arg<sup>9</sup>-bradykinin and bradykinin.</p> <p>Conclusions</p> <p>Nicotine induces airway hyperresponsiveness via transcriptional up-regulation of airway kinin B<sub>1 </sub>and B<sub>2 </sub>receptors, an effect mediated via neuronal nicotinic receptors. The underlying molecular mechanisms involve activation of JNK- and PDE4-mediated intracellular inflammatory signal pathways. Our results might be relevant to active and passive smokers suffering from airway hyperresponsiveness, and suggest new therapeutic targets for the treatment of smoke-associated airway disease.</p

    Activation of activin receptor-like kinases curbs mucosal inflammation and proliferation in chronic rhinosinusitis with nasal polyps

    Get PDF
    Chronic rhinosinusitis with nasal polyps (CRSwNP) is a widespread disease causing obstruction of the nasal cavity. Its cause remains unclear. The transforming growth-factor beta (TGF-beta) superfamily and their receptors, termed Activin receptor-like kinases (ALKs), have recently been suggested to play a role in local airway inflammation, but have so far not been evaluated in human nasal epithelial cells (HNECs) from CRSwNP patients. We demonstrated that ALK1-7 were expressed in the nasal polyp epithelium, and the expression of ALK1-6 was markedly elevated in polyps compared to nasal mucosa from healthy controls. Stimulation with the ALK ligand TGF-beta 1 decreased Ki67 expression in HNECs from CRSwNP patients, not evident in controls. Likewise, TGF-beta 1, Activin A and Activin B, all ALK ligands, decreased IL-8 release and Activin A and Activin B reduced ICAM1 expression on HNECs from CRSwNP patients, not seen in controls. Pre-stimulation with TGF-beta 1, Activin A, BMP4 and Activin B attenuated a TNF-ainduced ICAM1 upregulation on HNECs of CRSwNP. No effect was evident in controls. In conclusion, an increased expression of ALK1-6 was found on polyp epithelial cells and ligand stimulation appeared to reduce proliferation and local inflammation in polyps

    Diminished levels of nasal S100A7 (psoriasin) in seasonal allergic rhinitis: an effect mediated by Th2 cytokines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>S100A7 is an antimicrobial peptide involved in several inflammatory diseases. The aim of the present study was to explore the expression and regulation of S100A7 in seasonal allergic rhinitis (SAR).</p> <p>Methods</p> <p>Nasal lavage (NAL) fluid was obtained from healthy controls before and after lipopolysaccharide (LPS) provocation, from SAR patients before and after allergen challenge, and from SAR patients having completed allergen-specific immunotherapy (ASIT). Nasal biopsies, nasal epithelial cells and blood were acquired from healthy donors. The airway epithelial cell line FaDu was used for <it>in vitro </it>experiments. Real-time RT-PCR and immunohistochemistry were used to determine S100A7 expression in nasal tissue and cells. Release of S100A7 in NAL and culture supernatants was measured by ELISA. The function of recombinant S100A7 was explored in epithelial cells, neutrophils and peripheral blood mononuclear cells (PBMC).</p> <p>Results</p> <p>Nasal administration of LPS induced S100A7 release in healthy non-allergic subjects. The level of S100A7 was lower in NAL from SAR patients than from healthy controls, and it was further reduced in the SAR group 6 h post allergen provocation. In contrast, ASIT patients displayed higher levels after completed treatment. S100A7 was expressed in the nasal epithelium and in glands, and it was secreted by cultured epithelial cells. Stimulation with IL-4 and histamine repressed the epithelial S100A7 release. Further, recombinant S100A7 induced activation of neutrophils and PBMC.</p> <p>Conclusions</p> <p>The present study shows an epithelial expression and excretion of S100A7 in the nose after microbial stimulation. The levels are diminished in rhinitis patients and in the presence of an allergic cytokine milieu, suggesting that the antimicrobial defense is compromised in patients with SAR.</p
    corecore