109 research outputs found

    Lifetime vs. rate capability: Understanding the role of FEC and VC in high-energy Li-ion batteries with nano-silicon anodes

    Get PDF
    Fluoroethylene carbonate (FEC) and vinylene carbonate (VC) are the most frequently used electrolyte components to enhance the lifetime of anode materials in Li-ion batteries, but for silicon it is still ambiguous when FEC or VC is more beneficial. Herein, a nanostructured silicon/carbon anode derived from low-cost HSiCl3 is tailored by the rational choice of the electrolyte component, to obtain an anode material outperforming current complex silicon structures. We demonstrate highly reversible areal capacities of up to 5 mA h/cm2 at 4.4 mg/cm2 mass loading, a specific capacity of 1280 mA h/gElectrode, a capacity retention of 81% after 500 deep-discharge cycles versus lithium metal and successful full-cell tests with high-voltage cathodes meeting the requirements for real application. Electrochemical impedance spectroscopy and post-mortem investigation provide new insights in tailoring the interfacial properties of silicon-based anodes for high performance anode materials based on an alloying mechanism with large volume changes. The role of fluorine in the FEC-derived interfacial layer is discussed in comparison with the VC-derived layer and possible degradation mechanisms are proposed. We believe that this study gives a valuable understanding and provides new strategies on the facile use of additives for highly reversible silicon anodes in Li-ion batteries.Fil: Jaumann, Tony. Ifw Dresden; AlemaniaFil: Balach, Juan Manuel. Ifw Dresden; AlemaniaFil: Langklotz, Ulrike. Technische Universität Dresden; AlemaniaFil: Sauchuk, Viktar. Fraunhofer Institute for Ceramic Materials and Systems; AlemaniaFil: Fritsch, Marco. Fraunhofer Institute for Ceramic Materials and Systems; AlemaniaFil: Michaelis, Alexander. Technische Universität Dresden; AlemaniaFil: Teltevskij, Valerij. Leibniz Institute for Solid State and Materials Research; AlemaniaFil: Mikhailova, Daria. Leibniz Institute for Solid State and Materials Research; AlemaniaFil: Oswald, Steffen. Leibniz Institute for Solid State and Materials Research; AlemaniaFil: Klose, Markus. Leibniz Institute for Solid State and Materials Research; Alemania. Technische Universität Dresden; AlemaniaFil: Stephani, Guenter. Branch Lab Dresden. Fraunhofer Institute for Manufacturing Technology and Advanced Materials; ArgentinaFil: Hauser, Ralf. Branch Lab Dresden. Fraunhofer Institute for Manufacturing Technology and Advanced Materials; ArgentinaFil: Eckert, Jürgen. Technische Universität Dresden; Alemania. Leibniz Institute for Solid State and Materials Research; AlemaniaFil: Giebeler, Lars. Leibniz Institute for Solid State and Materials Research; Alemania. Technische Universität Dresden; Alemani

    SEI-component formation on sub 5 nm sized silicon nanoparticles in Li-ion batteries: The role of electrode preparation, FEC addition and binders

    Get PDF
    Silicon is a promising negative electrode for secondary lithium-based batteries, but the electrochemical reversibility of particularly nanostructured silicon electrodes drastically depends on their interfacial characteristics, commonly known as the solid electrolyte interface (SEI). The beneficial origin of certain electrolyte additives or different binders is still discussed controversially owing to the challenging peculiarities of interfacial post-mortem investigations of electrodes. In this work, we address the common difficulties of SEI investigations of porous silicon/carbon nanostructures and study the addition of a fluoroethylene carbonate (FEC) as a stabilizing additive as well as the use of two different binders, carboxymethyl cellulose/styrene-butadiene rubber (CMC/SBR) and polyacrylic acid (PAA), for the SEI formation. The electrode is composed of silicon nanocrystallites below 5 nm diameter allowing a detailed investigation of interfacial characteristics of silicon owing to the high surface area. We first performed galvanostatic long-term cycling (400 times) and carried out comprehensive ex situ characterization of the cycled nanocrystalline silicon electrodes with XRD, EDXS, TEM and XPS. We modified the preparation of the electrode for post-mortem characterization to distinguish between electrolyte components and the actual SEI. The impact of the FEC additive and two different binders on the interfacial layer is studied and the occurrence of diverse compounds, in particular LiF, Li2O and phosphates, is discussed. These results help to understand general issues in SEI formation and to pave the way for the development of advanced electrolytes allowing for a long-term performance of nanostructured Si-based electrodes

    Werkzeuge für betriebliche Eigenkontrollen zum Tierwohl

    Get PDF
    Tierhalter sollen das Wohlergehen ihrer Tiere regelmäßig und systematisch durch die Erfassung von Tierschutzindikatoren im Rahmen einer betrieblichen Eigenkontrolle überprüfen (§ 11 Absatz 8 TierSchG). Hierdurch können mögliche Tierwohlprobleme frühzeitig erkannt und Verbesserungsmaßnahmen eingeleitet werden. Für eine Vergleichbarkeit der Ergebnisse einer betrieblichen Eigenkontrolle ist eine standardisierte Erhebung der Tierschutzindikatoren Voraussetzung. Ziel der Arbeiten war es, für die betriebliche Eigenkontrolle vorgeschlagene Indikatoren für Rind, Schwein und Geflügel in der landwirtschaftlichen Praxis auf ihre Praktikabilität zu überprüfen. Zum Erlernen der Anwendung der Indikatoren wurden eine Vor-Ort- und eine Online-Schulung für Tierhalter erarbeitet und getestet. Zur Unterstützung der Erhebung im Stall wurden Erhebungsbögen und eine Excel®-Anwendung erstellt. Weiterhin wurde unter Einbeziehung zahlreicher Experten in einem mehrstufigen Prozess (Delphi-Befragung, Literaturauswertung, Fachgespräche, Praxiserhebungen) ein Orientierungsrahmen mit Ziel- und Alarmwerten abgestimmt, mit dem Tierhalter ihre Ergebnisse vergleichen und einordnen können. Mittels abschließend durchgeführter Interviews wurden alle Werkzeuge evaluiert

    Selective inactivation of hypomethylating agents by SAMHD1 provides a rationale for therapeutic stratification in AML.

    Get PDF
    Hypomethylating agents decitabine and azacytidine are regarded as interchangeable in the treatment of acute myeloid leukemia (AML). However, their mechanisms of action remain incompletely understood, and predictive biomarkers for HMA efficacy are lacking. Here, we show that the bioactive metabolite decitabine triphosphate, but not azacytidine triphosphate, functions as activator and substrate of the triphosphohydrolase SAMHD1 and is subject to SAMHD1-mediated inactivation. Retrospective immunohistochemical analysis of bone marrow specimens from AML patients at diagnosis revealed that SAMHD1 expression in leukemic cells inversely correlates with clinical response to decitabine, but not to azacytidine. SAMHD1 ablation increases the antileukemic activity of decitabine in AML cell lines, primary leukemic blasts, and xenograft models. AML cells acquire resistance to decitabine partly by SAMHD1 up-regulation. Together, our data suggest that SAMHD1 is a biomarker for the stratified use of hypomethylating agents in AML patients and a potential target for the treatment of decitabine-resistant leukemia

    SAMHD1 is a biomarker for cytarabine response and a therapeutic target in acute myeloid leukemia.

    Get PDF
    The nucleoside analog cytarabine (Ara-C) is an essential component of primary and salvage chemotherapy regimens for acute myeloid leukemia (AML). After cellular uptake, Ara-C is converted into its therapeutically active triphosphate metabolite, Ara-CTP, which exerts antileukemic effects, primarily by inhibiting DNA synthesis in proliferating cells. Currently, a substantial fraction of patients with AML fail to respond effectively to Ara-C therapy, and reliable biomarkers for predicting the therapeutic response to Ara-C are lacking. SAMHD1 is a deoxynucleoside triphosphate (dNTP) triphosphohydrolase that cleaves physiological dNTPs into deoxyribonucleosides and inorganic triphosphate. Although it has been postulated that SAMHD1 sensitizes cancer cells to nucleoside-analog derivatives through the depletion of competing dNTPs, we show here that SAMHD1 reduces Ara-C cytotoxicity in AML cells. Mechanistically, dGTP-activated SAMHD1 hydrolyzes Ara-CTP, which results in a drastic reduction of Ara-CTP in leukemic cells. Loss of SAMHD1 activity-through genetic depletion, mutational inactivation of its triphosphohydrolase activity or proteasomal degradation using specialized, virus-like particles-potentiates the cytotoxicity of Ara-C in AML cells. In mouse models of retroviral AML transplantation, as well as in retrospective analyses of adult patients with AML, the response to Ara-C-containing therapy was inversely correlated with SAMHD1 expression. These results identify SAMHD1 as a potential biomarker for the stratification of patients with AML who might best respond to Ara-C-based therapy and as a target for treating Ara-C-refractory AML

    In-situ estimation of ice crystal properties at the South Pole using LED calibration data from the IceCube Neutrino Observatory

    Get PDF
    The IceCube Neutrino Observatory instruments about 1 km3 of deep, glacial ice at the geographic South Pole using 5160 photomultipliers to detect Cherenkov light emitted by charged relativistic particles. A unexpected light propagation effect observed by the experiment is an anisotropic attenuation, which is aligned with the local flow direction of the ice. Birefringent light propagation has been examined as a possible explanation for this effect. The predictions of a first-principles birefringence model developed for this purpose, in particular curved light trajectories resulting from asymmetric diffusion, provide a qualitatively good match to the main features of the data. This in turn allows us to deduce ice crystal properties. Since the wavelength of the detected light is short compared to the crystal size, these crystal properties do not only include the crystal orientation fabric, but also the average crystal size and shape, as a function of depth. By adding small empirical corrections to this first-principles model, a quantitatively accurate description of the optical properties of the IceCube glacial ice is obtained. In this paper, we present the experimental signature of ice optical anisotropy observed in IceCube LED calibration data, the theory and parametrization of the birefringence effect, the fitting procedures of these parameterizations to experimental data as well as the inferred crystal properties.</p

    TXS 0506+056 with Updated IceCube Data

    Get PDF
    Past results from the IceCube Collaboration have suggested that the blazar TXS 0506+056 is a potential source of astrophysical neutrinos. However, in the years since there have been numerous updates to event processing and reconstruction, as well as improvements to the statistical methods used to search for astrophysical neutrino sources. These improvements in combination with additional years of data have resulted in the identification of NGC 1068 as a second neutrino source candidate. This talk will re-examine time-dependent neutrino emission from TXS 0506+056 using the most recent northern-sky data sample that was used in the analysis of NGC 1068. The results of using this updated data sample to obtain a significance and flux fit for the 2014 TXS 0506+056 "untriggered" neutrino flare are reported
    corecore