15 research outputs found

    The GTPase activating protein Gyp7 regulates Rab7/Ypt7 activity on late endosomes

    Get PDF
    Organelles of the endomembrane system contain Rab GTPases as identity markers. Their localization is determined by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). It remains largely unclear how these regulators are specifically targeted to organelles and how their activity is regulated. Here, we focus on the GAP Gyp7, which acts on the Rab7-like Ypt7 protein in yeast, and surprisingly observe the protein exclusively in puncta proximal to the vacuole. Mistargeting of Gyp7 to the vacuole strongly affects vacuole morphology, suggesting that endosomal localization is needed for function. In agreement, efficient endolysosomal transport requires Gyp7. In vitro assays reveal that Gyp7 requires a distinct lipid environment for membrane binding and activity. Overexpression of Gyp7 concentrates Ypt7 in late endosomes and results in resistance to rapamycin, an inhibitor of the target of rapamycin complex 1 (TORC1), suggesting that these late endosomes are signaling endosomes. We postulate that Gyp7 is part of regulatory machinery involved in late endosome function

    Protein-Protein-Wechselwirkungen bei der AP-3-Vesikelbildung und –fusion und der Protonenleitung durch die ATP-Synthase

    No full text
    Zu den Eigenschaften eukaryotischer Zellen gehört ihre Kompartimentierung, welche durch die Abtrennung verschiedener ReaktionsrĂ€ume durch Lipiddoppelschichten erreicht wird. Verschiedene Vesikel-Transportwege verbinden diese Kompartimente miteinander, einer dieser Wege in der Hefe Saccharomyces cerevisiae ist der sogenannte ALP-Weg. Dieser gehört zu den biosynthetischen Wegen, ĂŒber die neue Proteine an ihren Bestimmungsort gebracht werden, in diesem Falle die Vakuole. Ausgehend vom Golgi-Apparat werden die Vesikel dieses Weges mit Hilfe des Adaptorproteinkomplexes-3 (AP-3) gebildet. Ein weiteres Protein, das eine spezifische Funktion in diesem Weg ĂŒbernimmt, ist Vps41. Ein aktuelles Modell beschreibt seine Funktion in der Aufnahme der Vesikel an der Vakuole. Es konnte gezeigt werden, das Vps41 mit der sogenannten ear-DomĂ€ne von Apl5, einer Untereinheit des AP-3- Komplexes, interagiert. In dieser Arbeit konnte ich nachweisen, dass die Interaktionsstelle im Vps41 innerhalb einer konservierten PEST-DomĂ€ne liegt. Eine Deletion dieser DomĂ€ne beeinflußte die Funktion des Proteins im ALP-Weg jedoch nicht die in der homotypischen Vakuolenfusion und im CPY-Weg. Eine weitere Eingrenzung des deletierten Bereiches zeigte, dass die PEST-DomĂ€ne eine Sequenz enthĂ€lt, die einem Di-Leucin- Sortierungssignal Ă€hnlich ist. Dieses konnte ich als minimal notwendigen Bereich fĂŒr die Wechselwirkung mit der Apl5-ear-DomĂ€ne bestimmen. Meine Daten zeigen, dass dieser Bereich des Proteins notwendig ist fĂŒr das Docking der AP-3-Vesikel an der Vakuole. Weiterhin konnte ich eine kompetitive Bindung von Liposomen und Apl5 an die N-terminale HĂ€lfte von Vps41 zeigen. Zusammengefasst und mit aktuellen Veröffentlichungen in Zusammhang gebracht, ergĂ€nzen meine Daten das Modell der Funktion von Vps41 in der Vesikelaufnahme an der Vakuole: Vps41 wird durch die Rab-GTPase Ypt7, als deren Effektorprotein, an spĂ€te Endosomen gebunden. An dieser stark gekrĂŒmmten Membran taucht ein kĂŒrzlich identifiziertes ALPS (amphipathic lipid packing sensor)-Motiv im Vps41 in die Membran des Organells ein und zieht so den N-terminalen Bereich mit der Bindestelle fĂŒr die AP-3-Vesikel an die OberflĂ€che des Organells wodurch eine verfrĂŒhte Fusion der AP-3-Vesikel mit dem Endosom verhindert wird. Erst nach der Reifung zur Vakuole wird die PEST-DomĂ€ne fĂŒr die Bindung an Apl5 verfĂŒgbar, da sich die MembrankrĂŒmmung Ă€ndert. ZusĂ€tzlich wird das ALPS-Motiv phosphoryliert, so dass dieses nicht mehr in die Membran eintauchen kann. Erst jetzt ist eine Interaktion zwischen Apl5 und Vps41 und damit eine Fusion der AP-3-Vesikel mit der Vakuole möglich. Der zweite Teil dieser Arbeit beschĂ€ftigt sich mit der Protonentranslokation durch den Fo-Teil der ATP-Synthase aus Escherichia coli. Durch Mutagenese wurden ATP-Synthasen hergestellt, in denen die beiden fĂŒr den Protonentransport essentiellen AminosĂ€urereste D61 in der Untereinheit c und R210 in der Untereinheit a in der α-Helix in der sie liegen, entweder einzeln oder beide zusammen, um je eine Helixwindung nach oben oder unten verschoben wurden. Dies fĂŒhrt zu einer VerlĂ€ngerung bzw. VerkĂŒrzung der Protonenzu- und austrittskanĂ€le. Durch die Untersuchung der FunktionalitĂ€t dieser ATPasen auf sowohl aktives und passives Protonenpumpen, als auch ATP-Synthese konnte ich zeigen, daß die Position der beiden essentiellen AminosĂ€urereste cD61 und aR210 zueinander nicht entscheidend ist. Werden beide Reste in die gleiche Richtung verschoben, so daß ihre Position zueinander gleich bleibt, kommt es unabhĂ€ngig von der Richtung immer zu einem kompletten Funktionsverlust. Weiterhin lĂ€ĂŸt sich aus meinen Daten folgern, daß die Position des Restes aR210 in der Mitte der Membran wichtig ist. Beim Verschieben des Restes auf die Position 206 (a-up) geht die gesamte Funktion des Fo-Teiles verloren, wĂ€hrend das Verschieben auf die Position 214 (a-down) zu einem passiven Ausströmen der Protonen durch den Fo-Teil fĂŒhrt. Die Position des Restes cD61 in der Membran ist flexibler. Obwohl die Repositionierung des Aspartats auf die Position 57 (c-up) jegliche FunktionalitĂ€t des Fo-Teiles beeintrĂ€chtigt, ermöglicht ein Verschieben auf die Position 65 (c-down) aktives und passives Protonenpumpen, sowie die Synthese von ATP

    Structure of the endosomal CORVET tethering complex

    No full text
    Abstract Cells depend on their endolysosomal system for nutrient uptake and downregulation of plasma membrane proteins. These processes rely on endosomal maturation, which requires multiple membrane fusion steps. Early endosome fusion is promoted by the Rab5 GTPase and its effector, the hexameric CORVET tethering complex, which is homologous to the lysosomal HOPS. How these related complexes recognize their specific target membranes remains entirely elusive. Here, we solve the structure of CORVET by cryo-electron microscopy and revealed its minimal requirements for membrane tethering. As expected, the core of CORVET and HOPS resembles each other. However, the function-defining subunits show marked structural differences. Notably, we discover that unlike HOPS, CORVET depends not only on Rab5 but also on phosphatidylinositol-3-phosphate (PI3P) and membrane lipid packing defects for tethering, implying that an organelle-specific membrane code enables fusion. Our data suggest that both shape and membrane interactions of CORVET and HOPS are conserved in metazoans, thus providing a paradigm how tethering complexes function

    Structure of the HOPS tethering complex, a lysosomal membrane fusion machinery

    No full text
    Lysosomes are essential for cellular recycling, nutrient signaling, autophagy, and patho-genic bacteria and viruses invasion. Lysosomal fusion is fundamental to cell survival and requiresHOPS, a conserved heterohexameric tethering complex. On the membranes to be fused, HOPSbinds small membrane- associated GTPases and assembles SNAREs for fusion, but how the complexfulfills its function remained speculative. Here, we used cryo-electron microscopy to reveal the struc-ture of HOPS. Unlike previously reported, significant flexibility of HOPS is confined to its extremities,where GTPase binding occurs. The SNARE-binding module is firmly attached to the core, therefore,ideally positioned between the membranes to catalyze fusion. Our data suggest a model for howHOPS fulfills its dual functionality of tethering and fusion and indicate why it is an essential part ofthe membrane fusion machinery

    Loss-of-Function Mutations in TBC1D20 Cause Cataracts and Male Infertility in blind sterile Mice and Warburg Micro Syndrome in Humans.

    Get PDF
    blind sterile (bs) is a spontaneous autosomal-recessive mouse mutation discovered more than 30 years ago. Phenotypically, bs mice exhibit nuclear cataracts and male infertility; genetic analyses assigned the bs locus to mouse chromosome 2. In this study, we first positionally cloned the bs locus and identified a putative causative mutation in the Tbc1d20 gene. Functional analysis established the mouse TBC1D20 protein as a GTPase-activating protein (GAP) for RAB1 and RAB2, and bs as a TBC1D20 loss-of-function mutation. Evaluation of bs mouse embryonic fibroblasts (mEFs) identified enlarged Golgi morphology and aberrant lipid droplet (LD) formation. Based on the function of TBC1D20 as a RABGAP and the bs cataract and testicular phenotypes, we hypothesized that mutations in TBC1D20 may contribute to Warburg micro syndrome (WARBM); WARBM constitutes a spectrum of disorders characterized by eye, brain, and endocrine abnormalities caused by mutations in RAB3GAP1, RAB3GAP2, and RAB18. Sequence analysis of a cohort of 77 families affected by WARBM identified five distinct TBC1D20 loss-of-function mutations, thereby establishing these mutations as causative of WARBM. Evaluation of human fibroblasts deficient in TBC1D20 function identified aberrant LDs similar to those identified in the bs mEFs. Additionally, our results show that human fibroblasts deficient in RAB18 and RAB3GAP1 function also exhibit aberrant LD formation. These findings collectively indicate that a defect in LD formation/metabolism may be a common cellular abnormality associated with WARBM, although it remains unclear whether abnormalities in LD metabolism are contributing to WARBM disease pathology. Am J Hum Genet 2013 Dec 5; 93(6):1001-1014

    Loss-of-Function Mutations in TBC1D20 Cause Cataracts and Male Infertility in blind sterile Mice and Warburg Micro Syndrome in Humans.

    No full text
    blind sterile (bs) is a spontaneous autosomal-recessive mouse mutation discovered more than 30 years ago. Phenotypically, bs mice exhibit nuclear cataracts and male infertility; genetic analyses assigned the bs locus to mouse chromosome 2. In this study, we first positionally cloned the bs locus and identified a putative causative mutation in the Tbc1d20 gene. Functional analysis established the mouse TBC1D20 protein as a GTPase-activating protein (GAP) for RAB1 and RAB2, and bs as a TBC1D20 loss-of-function mutation. Evaluation of bs mouse embryonic fibroblasts (mEFs) identified enlarged Golgi morphology and aberrant lipid droplet (LD) formation. Based on the function of TBC1D20 as a RABGAP and the bs cataract and testicular phenotypes, we hypothesized that mutations in TBC1D20 may contribute to Warburg micro syndrome (WARBM); WARBM constitutes a spectrum of disorders characterized by eye, brain, and endocrine abnormalities caused by mutations in RAB3GAP1, RAB3GAP2, and RAB18. Sequence analysis of a cohort of 77 families affected by WARBM identified five distinct TBC1D20 loss-of-function mutations, thereby establishing these mutations as causative of WARBM. Evaluation of human fibroblasts deficient in TBC1D20 function identified aberrant LDs similar to those identified in the bs mEFs. Additionally, our results show that human fibroblasts deficient in RAB18 and RAB3GAP1 function also exhibit aberrant LD formation. These findings collectively indicate that a defect in LD formation/metabolism may be a common cellular abnormality associated with WARBM, although it remains unclear whether abnormalities in LD metabolism are contributing to WARBM disease pathology. Am J Hum Genet 2013 Dec 5; 93(6):1001-1014
    corecore