49 research outputs found

    Classification of red blood cell shapes in flow using outlier tolerant machine learning

    Get PDF
    The manual evaluation, classification and counting of biological objects demands for an enormous expenditure of time and subjective human input may be a source of error. Investigating the shape of red blood cells (RBCs) in microcapillary Poiseuille flow, we overcome this drawback by introducing a convolutional neural regression network for an automatic, outlier tolerant shape classification. From our experiments we expect two stable geometries: the so-called `slipper' and `croissant' shapes depending on the prevailing flow conditions and the cell-intrinsic parameters. Whereas croissants mostly occur at low shear rates, slippers evolve at higher flow velocities. With our method, we are able to find the transition point between both `phases' of stable shapes which is of high interest to ensuing theoretical studies and numerical simulations. Using statistically based thresholds, from our data, we obtain so-called phase diagrams which are compared to manual evaluations. Prospectively, our concept allows us to perform objective analyses of measurements for a variety of flow conditions and to receive comparable results. Moreover, the proposed procedure enables unbiased studies on the influence of drugs on flow properties of single RBCs and the resulting macroscopic change of the flow behavior of whole blood.Comment: 15 pages, published in PLoS Comput Biol, open acces

    Recompensation of Heart and Kidney Function after Treatment with Peritoneal Dialysis in a Case of Congestive Heart Failure

    Get PDF
    We report the case of a 57-year-old woman suffering from congestive heart failure. Due to refractory congestions despite optimised medical treatment, the patient was listed for heart transplantation and peritoneal dialysis was initiated. Peritoneal dialysis led to a significant weight loss, reduction of hyperhydration and extracellular water obtained by bioimpedance measurement, and a significant improvement in clinical and echocardiographic examination. Furthermore, residual kidney function increased during the long-term followup, and subsequently peritoneal dialysis was ceased. Pulmonary artery pressure and left ventricular ejection fraction remained stable and the patient did well. This case demonstrates the possibility of treating hyperhydration due to congestive heart failure with peritoneal dialysis resulting in recompensation of both heart and kidney functions

    The importance of nuclear RAGE-Mcm2 axis in diabetes or cancer-associated replication stress

    Full text link
    An elevated frequency of DNA replication defects is associated with diabetes and cancer. However, data linking these nuclear perturbations to the onset or progression of organ complications remained unexplored. Here, we report that RAGE (Receptor for Advanced Glycated Endproducts), previously believed to be an extracellular receptor, upon metabolic stress localizes to the damaged forks. There it interacts and stabilizes the minichromosome-maintenance (Mcm2-7) complex. Accordingly, RAGE deficiency leads to slowed fork progression, premature fork collapse, hypersensitivity to replication stress agents and reduction of viability, which was reversed by the reconstitution of RAGE. This was marked by the 53BP1/OPT-domain expression and the presence of micronuclei, premature loss-of-ciliated zones, increased incidences of tubular-karyomegaly, and finally, interstitial fibrosis. More importantly, the RAGE-Mcm2 axis was selectively compromised in cells expressing micronuclei in human biopsies and mouse models of diabetic nephropathy and cancer. Thus, the functional RAGE-Mcm2/7 axis is critical in handling replication stress in vitro and human disease

    Improvement of renal function after transcatheter aortic valve replacement and its impact on survival

    Get PDF
    Background Chronic kidney disease as well as acute kidney injury are associated with adverse outcomes after transcatheter aortic valve replacement (TAVR). However, little is known about the prognostic implications of an improvement in renal function after TAVR. Methods Renal improvement (RI) was defined as a decrease in postprocedural creatinine in μmol/l of ≥1% compared to its preprocedural baseline value. A propensity score representing the likelihood of RI was calculated to define patient groups which were comparable regarding potential confounders (age, sex, BMI, NYHA classification, STS score, log. EuroSCORE, history of atrial fibrillation/atrial flutter, pulmonary disease, previous stroke, CRP, creatinine, hsTNT and NT-proBNP). The cohort was stratified into 5 quintiles according to this propensity score and the survival time after TAVR was compared within each subgroup. Results Patients in quintile 5 (n = 93) had the highest likelihood for RI. They were characterized by higher creatinine, lower eGFR, higher NYHA class, higher NT-proBNP, being mostly female and having shorter overall survival time. Within quintile 5, patients without RI had significantly shorter survival compared to patients with RI (p = 0.002, HR = 0.32, 95% CI = [0.15-0.69]). There was no survival time difference between patients with and without RI in the whole cohort (p = 0.12) and in quintiles 1 to 4 (all p > 0.16). Analyses of specific subgroups showed that among patients with NYHA class IV, those with RI also had a significant survival time benefit (p < 0.001, HR = 0.15; 95%-CI = [0.05-0.44]) compared to patients without RI. Conclusions We here describe a propensity score-derived specific subgroup of patients in which RI after TAVR correlated with a significant survival benefit

    The Evolution of Erythrocytes Becoming Red in Respect to Fluorescence

    Get PDF
    Very young red blood cells, namely reticulocytes, can be quite easily recognized and labeled by cluster of differentiation antibodies (CD71, transferrin receptor) or by staining remnant RNA with thiazol orange. In contrast, age specific erythrocyte labeling is more difficult in later periods of their life time. While erythrocytes contain band 4.1 protein, a molecular clock, so far it has not been possible to read this clock on individual cells. One concept to track erythrocytes during their life time is to mark them when they are young, either directly in vivo or ex vivo followed by a transfusion. Several methods like biotinylation, use of isotopes or fluorescent labeling have proved to be useful experimental approaches but also have several inherent disadvantages. Genetic engineering of mice provides additional options to express fluorescent proteins in erythrocytes. To allow co-staining with popular green fluorescent dyes like Fluo-4 or other fluorescein-based dyes, we bred a mouse line expressing a tandem red fluorescent protein (tdRFP). Within this Brief Research Report, we provide the initial characterisation of this mouse line and show application examples ranging from transfusion experiments and intravital microscopy to multicolour flow cytometry and confocal imaging. We provide a versatile new tool for erythrocyte research and discuss a range of experimental opportunities to study membrane processes and other aspects of erythrocyte development and aging with help of these animals

    Red blood cell lingering modulates hematocrit distribution in the microcirculation

    Get PDF
    The distribution of red blood cells (RBCs) in the microcirculation determines the oxygen delivery and solute transport to tissues. This process relies on the partitioning of RBCs at successive bifurcations throughout the microvascular network, and it has been known since the last century that RBCs partition disproportionately to the fractional blood flow rate, therefore leading to heterogeneity of the hematocrit (i.e., volume fraction of RBCs in blood) in microvessels. Usually, downstream of a microvascular bifurcation, the vessel branch with a higher fraction of blood flow receives an even higher fraction of RBC flux. However, both temporal and time-average deviations from this phase-separation law have been observed in recent studies. Here, we quantify how the microscopic behavior of RBC lingering (i.e., RBCs temporarily residing near the bifurcation apex with diminished velocity) influences their partitioning, through combined in vivo experiments and in silico simulations. We developed an approach to quantify the cell lingering at highly confined capillary-level bifurcations and demonstrate that it correlates with deviations of the phase-separation process from established empirical predictions by Pries et al. Furthermore, we shed light on how the bifurcation geometry and cell membrane rigidity can affect the lingering behavior of RBCs; e.g., rigid cells tend to linger less than softer ones. Taken together, RBC lingering is an important mechanism that should be considered when studying how abnormal RBC rigidity in diseases such as malaria and sickle-cell disease could hinder the microcirculatory blood flow or how the vascular networks are altered under pathological conditions (e.g., thrombosis, tumors, aneurysm)

    The Erythrocyte Sedimentation Rate and Its Relation to Cell Shape and Rigidity of Red Blood Cells from Chorea-Acanthocytosis Patients in an Off-Label Treatment with Dasatinib

    Get PDF
    Background: Chorea-acanthocytosis (ChAc) is a rare hereditary neurodegenerative disease with deformed red blood cells (RBCs), so-called acanthocytes, as a typical marker of the disease. Erythrocyte sedimentation rate (ESR) was recently proposed as a diagnostic biomarker. To date, there is no treatment option for affected patients, but promising therapy candidates, such as dasatinib, a Lyn-kinase inhibitor, have been identified. Methods: RBCs of two ChAc patients during and after dasatinib treatment were characterized by the ESR, clinical hematology parameters and the 3D shape classification in stasis based on an artificial neural network. Furthermore, mathematical modeling was performed to understand the contribution of cell morphology and cell rigidity to the ESR. Microfluidic measurements were used to compare the RBC rigidity between ChAc patients and healthy controls. Results: The mechano-morphological characterization of RBCs from two ChAc patients in an off-label treatment with dasatinib revealed differences in the ESR and the acanthocyte count during and after the treatment period, which could not directly be related to each other. Clinical hematology parameters were in the normal range. Mathematical modeling indicated that RBC rigidity is more important for delayed ESR than cell shape. Microfluidic experiments confirmed a higher rigidity in the normocytes of ChAc patients compared to healthy controls. Conclusions: The results increase our understanding of the role of acanthocytes and their associated properties in the ESR, but the data are too sparse to answer the question of whether the ESR is a suitable biomarker for treatment success, whereas a correlation between hematological and neuronal phenotype is still subject to verification

    EASIX for Prediction of Outcome in Hospitalized SARS-CoV-2 Infected Patients

    Get PDF
    BackgroundThe coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and has evoked a pandemic that challenges public health-care systems worldwide. Endothelial cell dysfunction plays a key role in pathophysiology, and simple prognosticators may help to optimize allocation of limited resources. Endothelial activation and stress index (EASIX) is a validated predictor of endothelial complications and outcome after allogeneic stem cell transplantation. Aim of this study was to test if EASIX could predict life-threatening complications in patients with COVID-19.MethodsSARS-CoV-2-positive, hospitalized patients were enrolled onto a prospective non-interventional register study (n=100). Biomarkers were assessed at hospital admission. Primary endpoint was severe course of disease (mechanical ventilation and/or death, V/D). Results were validated in 126 patients treated in two independent institutions.ResultsEASIX at admission was a strong predictor of severe course of the disease (odds ratio for a two-fold change 3.4, 95%CI 1.8-6.3, p&lt;0.001), time to V/D (hazard ratio (HR) for a two-fold change 2.0, 95%CI 1.5-2.6, p&lt;0.001) as well as survival (HR for a two-fold change 1.7, 95%CI 1.2-2.5, p=0.006). The effect was retained in multivariable analysis adjusting for age, gender, and comorbidities and could be validated in the independent cohort. At hospital admission EASIX correlated with increased suppressor of tumorigenicity-2, soluble thrombomodulin, angiopoietin-2, CXCL8, CXCL9 and interleukin-18, but not interferon-alpha.ConclusionEASIX is a validated predictor of COVID19 outcome and an easy-to-access tool to segregate patients in need for intensive surveillance

    Sustained low efficiency dialysis using a single-pass batch system in acute kidney injury - a randomized interventional trial: the REnal Replacement Therapy Study in Intensive Care Unit PatiEnts

    Get PDF
    Introduction: Acute kidney injury (AKI) is associated with a high mortality of up to 60%. The mode of renal replacement therapy (intermittent versus continuous) has no impact on patient survival. Sustained low efficiency dialysis using a single-pass batch dialysis system (SLED-BD) has recently been introduced for the treatment of dialysis-dependent AKI. To date, however, only limited evidence is available in the comparison of SLED-BD versus continuous veno-venous hemofiltration (CVVH) in intensive care unit (ICU) patients with AKI. Methods: Prospective, randomized, interventional, clinical study at a surgical intensive care unit of a university hospital. Between 1 April 2006 and 31 January 2009, 232 AKI patients who underwent renal replacement therapy (RRT) were randomized in the study. Follow-up was assessed until 30 August 2009. Patients were either assigned to 12-h SLED-BD or to 24-h predilutional CVVH. Both therapies were performed at a blood flow of 100 to 120 ml/min. Results: 115 patients were treated with SLED-BD (total number of treatments n = 817) and 117 patients with CVVH (total number of treatments n = 877).The primary outcome measure, 90-day mortality, was similar between groups (SLED: 49.6% vs. CVVH: 55.6%, P = 0.43). Hemodynamic stability did not differ between SLED-BD and CVVH, whereas patients in the SLED-BD group had significantly fewer days of mechanical ventilation (17.7 ± 19.4 vs. 20.9 ± 19.8, P = 0.047) and fewer days in the ICU (19.6 ± 20.1 vs. 23.7 ± 21.9, P = 0.04). Patients treated with SLED needed fewer blood transfusions (1,375 ± 2,573 ml vs. 1,976 ± 3,316 ml, P = 0.02) and had a substantial reduction in nursing time spent for renal replacement therapy (P < 0.001) resulting in lower costs. Conclusions: SLED-BD was associated with reduced nursing time and lower costs compared to CVVH at similar outcomes. In the light of limited health care resources, SLED-BD offers an attractive alternative for the treatment of AKI in ICU patients. Trial registration: ClinicalTrials.gov NCT0032253

    Nanotube Action between Human Mesothelial Cells Reveals Novel Aspects of Inflammatory Responses

    Get PDF
    A well-known role of human peritoneal mesothelial cells (HPMCs), the resident cells of the peritoneal cavity, is the generation of an immune response during peritonitis by activation of T-cells via antigen presentation. Recent findings have shown that intercellular nanotubes (NTs) mediate functional connectivity between various cell types including immune cells - such as T-cells, natural killer (NK) cells or macrophages - by facilitating a spectrum of long range cell-cell interactions. Although of medical interest, the relevance of NT-related findings for human medical conditions and treatment, e.g. in relation to inflammatory processes, remains elusive, particularly due to a lack of appropriate in vivo data. Here, we show for the first time that primary cultures of patient derived HPMCs are functionally connected via membranous nanotubes. NT formation appears to be actin cytoskeleton dependent, mediated by the action of filopodia. Importantly, significant variances in NT numbers between different donors as a consequence of pathophysiological alterations were observable. Furthermore, we show that TNF-α induces nanotube formation and demonstrate a strong correlation of NT connectivity in accordance with the cellular cholesterol level and distribution, pointing to a complex involvement of NTs in inflammatory processes with potential impact for clinical treatment
    corecore