4 research outputs found

    Square-wave voltammetric determination of primaquine in urine using a multi-walled carbon nanotube modified electrode

    Get PDF
    The electrochemical process involving primaquine was studied at a glassy carbon (GC) electrode modified with multi-walled carbon nanotubes (MWCNT). The GC/MWCNTs electrode promoted an intense oxidation peak for primaquine, improving signal when compared to the one observed using bare GC as electrode. Besides the increasing in active electrode area, the MWCNTs seemed to provide faster electron transfer. The linear analytical response for primaquine, in the concentration range from 0.1 to 5.0 μmol L−1, was achieved on a supporting electrolyte consisting of Britton-Robinson buffer (0.02 mol L−1; pH 7.00) and KCl (0.25 mol L−1). The quantitative assay using square-wave voltammetry was performed by successive additions of standard into the electrochemical cell, containing the sample, with instrumental limit of detection (LOD) of 7.3 μg L−1 (28 nmol L−1). A procedure involving liquid-liquid extraction and thin-layer chromatography provided selectivity and pre-concentration required for the determination of traces of primaquine in urine samples (LOD of the method of 146 ng L−1). Recoveries in urine samples were statistically similar to the one achieved by HPLC

    Determination of thiomersal and mercurial residues by photo-degradation and flow injection analysis with luminescence probing using carbon quantum dots prepared from thiourea

    No full text
    Thiomersal is an organomercurial compound but, despite that, it is widely used in vaccines formulations to inactivate organisms and toxins and to prevent microbial growth during storage and use. In this work, thiomersal (along with traces of mercurial residues) was determined after photo-degradation (using UV and H2O2) to produce Hg2+ that was determined by flow injection analysis using luminescence probing with carbon quantum dots (prepared from citric acid and thiourea). Linear analytical response was observed in the concentration range of 25 to 900 µg L−1 and the method was efficiently applied to the determination of thiomersal in vaccines against hepatitis B and diphtheria-tetanus with recoveries ranging from 93 to 94%
    corecore