74 research outputs found

    Opencage radio frequency coil for magnetic resonance imaging

    Get PDF
    International audienc

    Recent advances on ultrasound contrast agents for blood-brain barrier opening with focused ultrasound

    Get PDF
    The blood-brain barrier is the primary obstacle to efficient intracerebral drug delivery. Focused ultrasound, in conjunction with microbubbles, is a targeted and non-invasive way to disrupt the blood-brain barrier. Many commercially available ultrasound contrast agents and agents specifically designed for therapeutic purposes have been investigated in ultrasound-mediated blood-brain barrier opening studies. The new generation of sono-sensitive agents, such as liquid-core droplets, can also potentially disrupt the blood-brain barrier after their ultrasound-induced vaporization. In this review, we describe the different compositions of agents used for ultrasound-mediated blood-brain barrier opening in recent studies, and we discuss the challenges of the past five years related to the optimal formulation of agents

    Wireless coils based on resonant and nonresonant coupled-wire structure for small animal multinuclear imaging

    Get PDF
    Earlier work on RF metasurfaces for preclinical MRI has targeted applications such as whole‐body imaging and dual‐frequency coils. In these studies, a nonresonant loop was used to induce currents into a metasurface that was operated as a passive inductively powered resonator. However, as we show in this study, the strategy of using a resonant metasurface reduces the impact of the loop on the global performance of the assembled coil. To mitigate this deficiency, we developed a new approach that relies on the combination of a commercial surface coil and a coupled‐wire structure operated away from its resonance. This strategy enables the extension of the sensitive volume of the surface coil while maintaining its local high sensitivity without any hardware modification. A wireless coil based on a two parallel coupled‐wire structure was designed and electromagnetic field simulations were carried out with different levels of matching and coupling between both components of the coil. For experimental characterization, a prototype was built and tested at two frequencies, 300 MHz for 1H and 282.6 MHz for 19F at 7 T. Phantom and in vivo MRI experiments were conducted in different configurations to study signal and noise figures of the structure. The results showed that the proposed strategy improves the overall sensitive volume while simultaneously maintaining a high signal‐to‐noise ratio (SNR). Metasurfaces based on coupled wires are therefore shown here as promising and versatile elements in the MRI RF chain, as they allow customized adjustment of the sensitive volume as a function of SNR yield. In addition, they can be easily adapted to different Larmor frequencies without loss of performance

    Magnetic Resonance Thermometry at 7T for Real-Time Monitoring and Correction of Ultrasound Induced Mild Hyperthermia

    Get PDF
    While Magnetic Resonance Thermometry (MRT) has been extensively utilized for non-invasive temperature measurement, there is limited data on the use of high field (≥7T) scanners for this purpose. MR-guided Focused Ultrasound (MRgFUS) is a promising non-invasive method for localized hyperthermia and drug delivery. MRT based on the temperature sensitivity of the proton resonance frequency (PRF) has been implemented in both a tissue phantom and in vivo in a mouse Met-1 tumor model, using partial parallel imaging (PPI) to speed acquisition. An MRgFUS system capable of delivering a controlled 3D acoustic dose during real time MRT with proportional, integral, and derivative (PID) feedback control was developed and validated. Real-time MRT was validated in a tofu phantom with fluoroptic temperature measurements, and acoustic heating simulations were in good agreement with MR temperature maps. In an in vivo Met-1 mouse tumor, the real-time PID feedback control is capable of maintaining the desired temperature with high accuracy. We found that real time MR control of hyperthermia is feasible at high field, and k-space based PPI techniques may be implemented for increasing temporal resolution while maintaining temperature accuracy on the order of 1°C

    About the Marty model of blood-brain barrier closure after its disruption using focused ultrasound

    No full text
    Many studies have demonstrated that pulsed ultrasound combined with circulating microbubbles can permeate the blood-brain barrier in a reversible manner. In 2012, our group demonstrated that the BBB remains permeable to small MRI contrast agents up to 24 h after ultrasound application and also that this duration was dependent on nanoparticle size. We derived a simple theoretical model explaining these observations (Marty et al 2012 J. Cereb. Blood Flow Metab. 32 1948-58). However, in this original paper the expression of the BBB closure time (t(1/2)) as a function of the size of delivered contrast agents (d(H)) could not be mathematically derived from the model but rather from a guessed function that is fit to the numerical solution of the model. In this context, the two numeric parameters of this fitting function could not be related to the other physical parameters of the model. Here, we present a formal solution, finding the same expression of t(1/2) in already published and linking t(1/2) to relevant physical variables such as the molecular hydrodynamic diameter d(H), the BBB closure rate k and the standard deviation of the initial BBB gap sizes distribution sigma(0)

    Ultrasound elastic tensor imaging: comparison with MR diffusion tensor imaging in the myocardium

    No full text
    We have previously proven the feasibility of ultrasound-based shear wave imaging (SWI) to non-invasively characterize myocardial fiber orientation in both in vitro porcine and in vivo ovine hearts. The SWI-estimated results were in good correlation with histology. In this study, we proposed a new and robust fiber angle estimation method through a tensor-based approach for SWI, coined together as elastic tensor imaging (ETI), and compared it with magnetic resonance diffusion tensor imaging (DTI), a current gold standard and extensively reported non-invasive imaging technique for mapping fiber architecture. Fresh porcine (n = 5) and ovine (n = 5) myocardial samples (20 × 20 × 30 mm3) were studied. ETI was firstly performed to generate shear waves and to acquire the wave events at ultrafast frame rate (8000 fps). A 2.8 MHz phased array probe (pitch = 0.28 mm), connected to a prototype ultrasound scanner, was mounted on a customized MRI-compatible rotation device, which allowed both the rotation of the probe from −90° to 90° at 5° increments and co-registration between two imaging modalities. Transmural shear wave speed at all propagation directions realized was firstly estimated. The fiber angles were determined from the shear wave speed map using the least-squares method and eigen decomposition. The test myocardial sample together with the rotation device was then placed inside a 7T MRI scanner. Diffusion was encoded in six directions. A total of 270 diffusion-weighted images (b = 1000 s mm−2, FOV = 30 mm, matrix size = 60 × 64, TR = 6 s, TE = 19 ms, 24 averages) and 45 B0 images were acquired in 14 h 30 min. The fiber structure was analyzed by the fiber-tracking module in software, MedINRIA. The fiber orientation in the overlapped myocardial region which both ETI and DTI accessed was therefore compared, thanks to the co-registered imaging system. Results from all ten samples showed good correlation (r2 = 0.81, p 0.05, unpaired, one-tailed t-test, N = 10). In conclusion, we have demonstrated that the fiber orientation estimated by ETI, which assesses the shear wave speed (and thus the stiffness), was comparable to that measured by DTI, which evaluates the preferred direction of water diffusion, and have validated this concept within the myocardium. Moreover, ETI was shown capable of mapping the transmural fiber angles with as few as seven shear wave propagation directions

    Numerical model fully depicting nanoparticle uptake within brain after ultrasound induced Blood-Brain Barrier opening

    No full text

    Volume coil for MRI based on metasurface

    No full text
    International audienceConventional birdcages are radiofrequency coils for magnetic resonance imaging (MRI) that consists of closed, right-hand or left-hand transmission lines with sub-wavelength periodicity. Analyzing these coils in terms of metasurface leads to engineering their properties as will and achieve original applications. To that end, we control the intrinsic impedance and the phase shift of each unit cell. As a demonstration, we use this concept to break the periodicity of the structure in order to provide a wide aperture allowing an easy access to the region of interest. We show that this coil, that we have called opencage, achieves good isolation between two driving ports and high homogeneity of the magnetic field. The results of measurements realized with phantom and in-vivo in MRI are presented. These results have confirmed the good performances predicted by our theoretical approach and the numerical calculations. This opencage coil could be used for many applications such as pre-clinical imaging of small animals or human head clinical imaging
    corecore