12 research outputs found

    Biochemical characterization of the REC114, MEI4 and IHO1 proteins involved in the initiation of meiotic recombination in the mouse

    No full text
    La mĂ©iose est une division cellulaire spĂ©cialisĂ©e des cellules germinales qui permet la production des gamĂštes haploĂŻdes en rĂ©duisant de moitiĂ© le nombre de chromosomes des cellules mĂšres. Ce processus est constituĂ© d’un cycle de rĂ©plication suivi de deux cycles de division : mĂ©iose I et mĂ©iose II. La rĂ©duction des chromosomes a lieu pendant la mĂ©iose I oĂč les chromosomes homologues d’origine maternelle et paternelle sont sĂ©parĂ©s. Cette sĂ©grĂ©gation rĂ©ductionnelle nĂ©cessite la formation de plusieurs cassures double-brin de l'ADN (DSB) et leur rĂ©paration par la recombinaison homologue, appelĂ©e Ă©galement recombinaison mĂ©iotique. Ce mĂ©canisme permet la crĂ©ation de liens physiques entre les chromosomes via des Ă©changes rĂ©ciproques d’informations gĂ©nĂ©tiques entre les homologues, ou crossing-over (CO). La formation d'au moins un CO, dit obligatoire, entre chaque paire d'homologues est requise pour une sĂ©grĂ©gation rĂ©ductionnelle appropriĂ©e. De plus, ce brassage gĂ©nĂ©tique permet de gĂ©nĂ©rer des diversitĂ©s gĂ©nĂ©tiques au sein des populations. Cependant, les erreurs de la mĂ©iose sont les principales causes d'aneuploĂŻdie, de malformations congĂ©nitales et d’infertilitĂ©.Lors de la recombinaison mĂ©iotique, la formation des DSB est catalysĂ©e par un complexe du type topoisomĂ©rase, composĂ© de l'enzyme SPO11 et de son partenaire de liaison TOPOVIBL. Toutefois, l’activitĂ© de ce complexe nĂ©cessite un ensemble partiellement conservĂ© de protĂ©ines rĂ©gulatrices, qui sont sept chez les mammifĂšres : REC114, MEI4, IHO1, HORMAD1/2, MEI1, ANKRD31. MalgrĂ© leurs importances lors de la formation des DSB, le rĂŽle exact de ces protĂ©ines et le mĂ©canisme molĂ©culaire de leurs actions ne sont pas bien caractĂ©risĂ©s. Mon travail s’est portĂ© sur les protĂ©ines REC114, MEI4, et IHO1. Le but de mon projet de thĂšse Ă©tait de rĂ©aliser une Ă©tude biophysique et structurale de ces facteurs protĂ©iques afin de comprendre leurs organisations et de caractĂ©riser les dĂ©tails molĂ©culaires de leurs interactions.Les constructions protĂ©iques d’IHO1 et du sous-complexe REC114-MEI4 ont Ă©tĂ© produites en bactĂ©rie puis purifiĂ©es sĂ©parĂ©ment. Les Ă©chantillons protĂ©iques ont Ă©tĂ© caractĂ©risĂ©s par plusieurs techniques (SEC-MALS, spectromĂ©trie de masse et AUC) pour dĂ©terminer leurs Ă©tats oligomĂ©riques. Les diffĂ©rentes analyses ont Ă©tabli que la protĂ©ine IHO1 est tĂ©tramĂ©rique alors que le sous-complexe REC114-MEI4 est prĂ©sent principalement sous forme hĂ©tĂ©rotrimĂ©rique en solution (2REC114/1MEI4). Durant cette thĂšse, l’interaction entre le sous-complexe REC114-MEI4 et la protĂ©ine IHO1 a Ă©tĂ© identifiĂ©e initialement par la chromatographie d’exclusion de taille, puis elle a Ă©tĂ© confirmĂ©e et son affinitĂ© a Ă©tĂ© caractĂ©risĂ©e par des analyses ITC. Ce travail a permis de mettre en Ă©vidence le rĂŽle de la partie N-terminale d’IHO1 et du domaine PH de REC114 pour cette interaction. La caractĂ©risation structurale du complexe REC114-MEI4 et de la protĂ©ine IHO1 seule ou en complexe a Ă©tĂ© initiĂ©e par plusieurs techniques combinant la cristallographie, la rĂ©sonance magnĂ©tique nuclĂ©aire et microscopie Ă©lectronique. Actuellement, des cristaux sont obtenus et sont en cours d’optimisation pour le fragment structurĂ© d’IHO1, tandis que la caractĂ©risation du complexe REC114-MEI4 par RMN et du complexe REC114-IHO1-MEI4 par la microscopie Ă©lectronique nĂ©cessite encore des optimisations. Par ailleurs, la modĂ©lisation de la structure tridimensionnelle des protĂ©ines par AlphaFold2 nous a permis d’identifier les rĂ©sidus impliquĂ©s dans la dimĂ©risation de REC114 et dans son interaction avec MEI4 et IHO1. Ceux-ci ont Ă©tĂ© mutĂ©s et analysĂ©s in vitro. Un projet de test in vivo de l’effet de ces mutations est en cours en collaboration avec l’équipe du Dr. Bernard De Massy (IGH Montpelier). Les rĂ©sultats obtenus durant ce travail seront poursuivis par des Ă©tudes structurales et fonctionnelles plus approfondies sur ces protĂ©ines mĂ©iotiques, seules ou en prĂ©sence de partenaires supplĂ©mentaires.Meiosis is a specialized cell division program that allows the formation of haploid gametes from diploid cells in sexually reproducing organisms. The halving of this genetic content is a result of the cell division process where only one round of DNA replication is followed by two divisions (Meiosis I and Meiosis II). Chromosome reduction occurs during meiosis I where maternal and paternal homologous chromosomes are separated. This process involves the formation of DNA double-strand breaks that are repaired by homologous recombination, also called meiotic recombination. This mechanism allows the formation of physical links, the crossing-overs (CO), between homologues through reciprocal exchanges. The formation of at least one CO per homologue pair, called obligatory CO, is required for faithful meiotic recombination. As such, meiosis generates genetic diversity in a population; however, meiotic errors are also the major causes of aneuploidy, congenital anomalies and infertility.DSB formation is catalyzed by the SPO11-TOPOVIBL complex and a set of partially conserved DSB formation-regulating proteins. In mammals, there are at least seven proteins that are essential for DSB formation: REC114, MEI4, IHO1, HORMAD1/2, MEI1, ANKRD31, but the exact role of these proteins and the molecular mechanism of their action remain unclear. My work focused on REC114, MEI4, and IHO1 proteins. The aim of my thesis was to perform a biophysical and structural analysis of these protein factors and characterize the molecular details of their interactions.Constructs of IHO1 and the REC114-MEI4 sub-complex were produced in bacteria and then purified separately. Protein samples were characterized by several techniques (SEC-MALS, mass spectrometry and AUC) to determine their oligomeric states. The different analyses established that the IHO1 protein was tetrameric while the REC114-MEI4 sub-complex is present mainly in heterotrimeric form (2REC114/1MEI4). During this thesis, the interaction between the REC114-MEI4 sub-complex and the IHO1 protein was initially identified by size exclusion chromatography and then confirmed by ITC analyses. This work revealed the role of the N-terminal part of IHO1 and the PH domain of REC114 in this interaction. The structural characterization of the REC114-MEI4 complex and of the IHO1 protein alone or in a complex with REC114 was initiated by several techniques combining crystallography, nuclear magnetic resonance and electronic microscopy but still requires optimizations. Nevertheless, the modelling of the three-dimensional structure of the proteins by AlphaFold2 allowed us to obtain structural insight into the dimerization of REC114 and its interactions with MEI4 and IHOI. I identified residues involved in these interactions and their mutagenesis was used to validate the structural models in vitro. The in vivo characterization of the effect of these mutations is been performed in collaboration with the team of Dr. Bernard De Massy (IGH Montpellier). The results obtained during this work will be followed up with further structural and functional studies on these meiotic proteins, either alone or in the presence of additional partners

    CaractĂ©risation biochimique des protĂ©ines REC114, MEI4 et IHO1 impliquĂ©es dans l’initiation de la recombinaison mĂ©iotique chez la souris

    No full text
    Meiosis is a specialized cell division program that allows the formation of haploid gametes from diploid cells in sexually reproducing organisms. The halving of this genetic content is a result of the cell division process where only one round of DNA replication is followed by two divisions (Meiosis I and Meiosis II). Chromosome reduction occurs during meiosis I where maternal and paternal homologous chromosomes are separated. This process involves the formation of DNA double-strand breaks that are repaired by homologous recombination, also called meiotic recombination. This mechanism allows the formation of physical links, the crossing-overs (CO), between homologues through reciprocal exchanges. The formation of at least one CO per homologue pair, called obligatory CO, is required for faithful meiotic recombination. As such, meiosis generates genetic diversity in a population; however, meiotic errors are also the major causes of aneuploidy, congenital anomalies and infertility.DSB formation is catalyzed by the SPO11-TOPOVIBL complex and a set of partially conserved DSB formation-regulating proteins. In mammals, there are at least seven proteins that are essential for DSB formation: REC114, MEI4, IHO1, HORMAD1/2, MEI1, ANKRD31, but the exact role of these proteins and the molecular mechanism of their action remain unclear. My work focused on REC114, MEI4, and IHO1 proteins. The aim of my thesis was to perform a biophysical and structural analysis of these protein factors and characterize the molecular details of their interactions.Constructs of IHO1 and the REC114-MEI4 sub-complex were produced in bacteria and then purified separately. Protein samples were characterized by several techniques (SEC-MALS, mass spectrometry and AUC) to determine their oligomeric states. The different analyses established that the IHO1 protein was tetrameric while the REC114-MEI4 sub-complex is present mainly in heterotrimeric form (2REC114/1MEI4). During this thesis, the interaction between the REC114-MEI4 sub-complex and the IHO1 protein was initially identified by size exclusion chromatography and then confirmed by ITC analyses. This work revealed the role of the N-terminal part of IHO1 and the PH domain of REC114 in this interaction. The structural characterization of the REC114-MEI4 complex and of the IHO1 protein alone or in a complex with REC114 was initiated by several techniques combining crystallography, nuclear magnetic resonance and electronic microscopy but still requires optimizations. Nevertheless, the modelling of the three-dimensional structure of the proteins by AlphaFold2 allowed us to obtain structural insight into the dimerization of REC114 and its interactions with MEI4 and IHOI. I identified residues involved in these interactions and their mutagenesis was used to validate the structural models in vitro. The in vivo characterization of the effect of these mutations is been performed in collaboration with the team of Dr. Bernard De Massy (IGH Montpellier). The results obtained during this work will be followed up with further structural and functional studies on these meiotic proteins, either alone or in the presence of additional partners.La mĂ©iose est une division cellulaire spĂ©cialisĂ©e des cellules germinales qui permet la production des gamĂštes haploĂŻdes en rĂ©duisant de moitiĂ© le nombre de chromosomes des cellules mĂšres. Ce processus est constituĂ© d’un cycle de rĂ©plication suivi de deux cycles de division : mĂ©iose I et mĂ©iose II. La rĂ©duction des chromosomes a lieu pendant la mĂ©iose I oĂč les chromosomes homologues d’origine maternelle et paternelle sont sĂ©parĂ©s. Cette sĂ©grĂ©gation rĂ©ductionnelle nĂ©cessite la formation de plusieurs cassures double-brin de l'ADN (DSB) et leur rĂ©paration par la recombinaison homologue, appelĂ©e Ă©galement recombinaison mĂ©iotique. Ce mĂ©canisme permet la crĂ©ation de liens physiques entre les chromosomes via des Ă©changes rĂ©ciproques d’informations gĂ©nĂ©tiques entre les homologues, ou crossing-over (CO). La formation d'au moins un CO, dit obligatoire, entre chaque paire d'homologues est requise pour une sĂ©grĂ©gation rĂ©ductionnelle appropriĂ©e. De plus, ce brassage gĂ©nĂ©tique permet de gĂ©nĂ©rer des diversitĂ©s gĂ©nĂ©tiques au sein des populations. Cependant, les erreurs de la mĂ©iose sont les principales causes d'aneuploĂŻdie, de malformations congĂ©nitales et d’infertilitĂ©.Lors de la recombinaison mĂ©iotique, la formation des DSB est catalysĂ©e par un complexe du type topoisomĂ©rase, composĂ© de l'enzyme SPO11 et de son partenaire de liaison TOPOVIBL. Toutefois, l’activitĂ© de ce complexe nĂ©cessite un ensemble partiellement conservĂ© de protĂ©ines rĂ©gulatrices, qui sont sept chez les mammifĂšres : REC114, MEI4, IHO1, HORMAD1/2, MEI1, ANKRD31. MalgrĂ© leurs importances lors de la formation des DSB, le rĂŽle exact de ces protĂ©ines et le mĂ©canisme molĂ©culaire de leurs actions ne sont pas bien caractĂ©risĂ©s. Mon travail s’est portĂ© sur les protĂ©ines REC114, MEI4, et IHO1. Le but de mon projet de thĂšse Ă©tait de rĂ©aliser une Ă©tude biophysique et structurale de ces facteurs protĂ©iques afin de comprendre leurs organisations et de caractĂ©riser les dĂ©tails molĂ©culaires de leurs interactions.Les constructions protĂ©iques d’IHO1 et du sous-complexe REC114-MEI4 ont Ă©tĂ© produites en bactĂ©rie puis purifiĂ©es sĂ©parĂ©ment. Les Ă©chantillons protĂ©iques ont Ă©tĂ© caractĂ©risĂ©s par plusieurs techniques (SEC-MALS, spectromĂ©trie de masse et AUC) pour dĂ©terminer leurs Ă©tats oligomĂ©riques. Les diffĂ©rentes analyses ont Ă©tabli que la protĂ©ine IHO1 est tĂ©tramĂ©rique alors que le sous-complexe REC114-MEI4 est prĂ©sent principalement sous forme hĂ©tĂ©rotrimĂ©rique en solution (2REC114/1MEI4). Durant cette thĂšse, l’interaction entre le sous-complexe REC114-MEI4 et la protĂ©ine IHO1 a Ă©tĂ© identifiĂ©e initialement par la chromatographie d’exclusion de taille, puis elle a Ă©tĂ© confirmĂ©e et son affinitĂ© a Ă©tĂ© caractĂ©risĂ©e par des analyses ITC. Ce travail a permis de mettre en Ă©vidence le rĂŽle de la partie N-terminale d’IHO1 et du domaine PH de REC114 pour cette interaction. La caractĂ©risation structurale du complexe REC114-MEI4 et de la protĂ©ine IHO1 seule ou en complexe a Ă©tĂ© initiĂ©e par plusieurs techniques combinant la cristallographie, la rĂ©sonance magnĂ©tique nuclĂ©aire et microscopie Ă©lectronique. Actuellement, des cristaux sont obtenus et sont en cours d’optimisation pour le fragment structurĂ© d’IHO1, tandis que la caractĂ©risation du complexe REC114-MEI4 par RMN et du complexe REC114-IHO1-MEI4 par la microscopie Ă©lectronique nĂ©cessite encore des optimisations. Par ailleurs, la modĂ©lisation de la structure tridimensionnelle des protĂ©ines par AlphaFold2 nous a permis d’identifier les rĂ©sidus impliquĂ©s dans la dimĂ©risation de REC114 et dans son interaction avec MEI4 et IHO1. Ceux-ci ont Ă©tĂ© mutĂ©s et analysĂ©s in vitro. Un projet de test in vivo de l’effet de ces mutations est en cours en collaboration avec l’équipe du Dr. Bernard De Massy (IGH Montpelier). Les rĂ©sultats obtenus durant ce travail seront poursuivis par des Ă©tudes structurales et fonctionnelles plus approfondies sur ces protĂ©ines mĂ©iotiques, seules ou en prĂ©sence de partenaires supplĂ©mentaires

    CaractĂ©risation biochimique des protĂ©ines REC114, MEI4 et IHO1 impliquĂ©es dans l’initiation de la recombinaison mĂ©iotique chez la souris

    No full text
    Meiosis is a specialized cell division program that allows the formation of haploid gametes from diploid cells in sexually reproducing organisms. The halving of this genetic content is a result of the cell division process where only one round of DNA replication is followed by two divisions (Meiosis I and Meiosis II). Chromosome reduction occurs during meiosis I where maternal and paternal homologous chromosomes are separated. This process involves the formation of DNA double-strand breaks that are repaired by homologous recombination, also called meiotic recombination. This mechanism allows the formation of physical links, the crossing-overs (CO), between homologues through reciprocal exchanges. The formation of at least one CO per homologue pair, called obligatory CO, is required for faithful meiotic recombination. As such, meiosis generates genetic diversity in a population; however, meiotic errors are also the major causes of aneuploidy, congenital anomalies and infertility.DSB formation is catalyzed by the SPO11-TOPOVIBL complex and a set of partially conserved DSB formation-regulating proteins. In mammals, there are at least seven proteins that are essential for DSB formation: REC114, MEI4, IHO1, HORMAD1/2, MEI1, ANKRD31, but the exact role of these proteins and the molecular mechanism of their action remain unclear. My work focused on REC114, MEI4, and IHO1 proteins. The aim of my thesis was to perform a biophysical and structural analysis of these protein factors and characterize the molecular details of their interactions.Constructs of IHO1 and the REC114-MEI4 sub-complex were produced in bacteria and then purified separately. Protein samples were characterized by several techniques (SEC-MALS, mass spectrometry and AUC) to determine their oligomeric states. The different analyses established that the IHO1 protein was tetrameric while the REC114-MEI4 sub-complex is present mainly in heterotrimeric form (2REC114/1MEI4). During this thesis, the interaction between the REC114-MEI4 sub-complex and the IHO1 protein was initially identified by size exclusion chromatography and then confirmed by ITC analyses. This work revealed the role of the N-terminal part of IHO1 and the PH domain of REC114 in this interaction. The structural characterization of the REC114-MEI4 complex and of the IHO1 protein alone or in a complex with REC114 was initiated by several techniques combining crystallography, nuclear magnetic resonance and electronic microscopy but still requires optimizations. Nevertheless, the modelling of the three-dimensional structure of the proteins by AlphaFold2 allowed us to obtain structural insight into the dimerization of REC114 and its interactions with MEI4 and IHOI. I identified residues involved in these interactions and their mutagenesis was used to validate the structural models in vitro. The in vivo characterization of the effect of these mutations is been performed in collaboration with the team of Dr. Bernard De Massy (IGH Montpellier). The results obtained during this work will be followed up with further structural and functional studies on these meiotic proteins, either alone or in the presence of additional partners.La mĂ©iose est une division cellulaire spĂ©cialisĂ©e des cellules germinales qui permet la production des gamĂštes haploĂŻdes en rĂ©duisant de moitiĂ© le nombre de chromosomes des cellules mĂšres. Ce processus est constituĂ© d’un cycle de rĂ©plication suivi de deux cycles de division : mĂ©iose I et mĂ©iose II. La rĂ©duction des chromosomes a lieu pendant la mĂ©iose I oĂč les chromosomes homologues d’origine maternelle et paternelle sont sĂ©parĂ©s. Cette sĂ©grĂ©gation rĂ©ductionnelle nĂ©cessite la formation de plusieurs cassures double-brin de l'ADN (DSB) et leur rĂ©paration par la recombinaison homologue, appelĂ©e Ă©galement recombinaison mĂ©iotique. Ce mĂ©canisme permet la crĂ©ation de liens physiques entre les chromosomes via des Ă©changes rĂ©ciproques d’informations gĂ©nĂ©tiques entre les homologues, ou crossing-over (CO). La formation d'au moins un CO, dit obligatoire, entre chaque paire d'homologues est requise pour une sĂ©grĂ©gation rĂ©ductionnelle appropriĂ©e. De plus, ce brassage gĂ©nĂ©tique permet de gĂ©nĂ©rer des diversitĂ©s gĂ©nĂ©tiques au sein des populations. Cependant, les erreurs de la mĂ©iose sont les principales causes d'aneuploĂŻdie, de malformations congĂ©nitales et d’infertilitĂ©.Lors de la recombinaison mĂ©iotique, la formation des DSB est catalysĂ©e par un complexe du type topoisomĂ©rase, composĂ© de l'enzyme SPO11 et de son partenaire de liaison TOPOVIBL. Toutefois, l’activitĂ© de ce complexe nĂ©cessite un ensemble partiellement conservĂ© de protĂ©ines rĂ©gulatrices, qui sont sept chez les mammifĂšres : REC114, MEI4, IHO1, HORMAD1/2, MEI1, ANKRD31. MalgrĂ© leurs importances lors de la formation des DSB, le rĂŽle exact de ces protĂ©ines et le mĂ©canisme molĂ©culaire de leurs actions ne sont pas bien caractĂ©risĂ©s. Mon travail s’est portĂ© sur les protĂ©ines REC114, MEI4, et IHO1. Le but de mon projet de thĂšse Ă©tait de rĂ©aliser une Ă©tude biophysique et structurale de ces facteurs protĂ©iques afin de comprendre leurs organisations et de caractĂ©riser les dĂ©tails molĂ©culaires de leurs interactions.Les constructions protĂ©iques d’IHO1 et du sous-complexe REC114-MEI4 ont Ă©tĂ© produites en bactĂ©rie puis purifiĂ©es sĂ©parĂ©ment. Les Ă©chantillons protĂ©iques ont Ă©tĂ© caractĂ©risĂ©s par plusieurs techniques (SEC-MALS, spectromĂ©trie de masse et AUC) pour dĂ©terminer leurs Ă©tats oligomĂ©riques. Les diffĂ©rentes analyses ont Ă©tabli que la protĂ©ine IHO1 est tĂ©tramĂ©rique alors que le sous-complexe REC114-MEI4 est prĂ©sent principalement sous forme hĂ©tĂ©rotrimĂ©rique en solution (2REC114/1MEI4). Durant cette thĂšse, l’interaction entre le sous-complexe REC114-MEI4 et la protĂ©ine IHO1 a Ă©tĂ© identifiĂ©e initialement par la chromatographie d’exclusion de taille, puis elle a Ă©tĂ© confirmĂ©e et son affinitĂ© a Ă©tĂ© caractĂ©risĂ©e par des analyses ITC. Ce travail a permis de mettre en Ă©vidence le rĂŽle de la partie N-terminale d’IHO1 et du domaine PH de REC114 pour cette interaction. La caractĂ©risation structurale du complexe REC114-MEI4 et de la protĂ©ine IHO1 seule ou en complexe a Ă©tĂ© initiĂ©e par plusieurs techniques combinant la cristallographie, la rĂ©sonance magnĂ©tique nuclĂ©aire et microscopie Ă©lectronique. Actuellement, des cristaux sont obtenus et sont en cours d’optimisation pour le fragment structurĂ© d’IHO1, tandis que la caractĂ©risation du complexe REC114-MEI4 par RMN et du complexe REC114-IHO1-MEI4 par la microscopie Ă©lectronique nĂ©cessite encore des optimisations. Par ailleurs, la modĂ©lisation de la structure tridimensionnelle des protĂ©ines par AlphaFold2 nous a permis d’identifier les rĂ©sidus impliquĂ©s dans la dimĂ©risation de REC114 et dans son interaction avec MEI4 et IHO1. Ceux-ci ont Ă©tĂ© mutĂ©s et analysĂ©s in vitro. Un projet de test in vivo de l’effet de ces mutations est en cours en collaboration avec l’équipe du Dr. Bernard De Massy (IGH Montpelier). Les rĂ©sultats obtenus durant ce travail seront poursuivis par des Ă©tudes structurales et fonctionnelles plus approfondies sur ces protĂ©ines mĂ©iotiques, seules ou en prĂ©sence de partenaires supplĂ©mentaires

    CaractĂ©risation biochimique des protĂ©ines REC114, MEI4 et IHO1 impliquĂ©es dans l’initiation de la recombinaison mĂ©iotique chez la souris

    No full text
    Meiosis is a specialized cell division program that allows the formation of haploid gametes from diploid cells in sexually reproducing organisms. The halving of this genetic content is a result of the cell division process where only one round of DNA replication is followed by two divisions (Meiosis I and Meiosis II). Chromosome reduction occurs during meiosis I where maternal and paternal homologous chromosomes are separated. This process involves the formation of DNA double-strand breaks that are repaired by homologous recombination, also called meiotic recombination. This mechanism allows the formation of physical links, the crossing-overs (CO), between homologues through reciprocal exchanges. The formation of at least one CO per homologue pair, called obligatory CO, is required for faithful meiotic recombination. As such, meiosis generates genetic diversity in a population; however, meiotic errors are also the major causes of aneuploidy, congenital anomalies and infertility.DSB formation is catalyzed by the SPO11-TOPOVIBL complex and a set of partially conserved DSB formation-regulating proteins. In mammals, there are at least seven proteins that are essential for DSB formation: REC114, MEI4, IHO1, HORMAD1/2, MEI1, ANKRD31, but the exact role of these proteins and the molecular mechanism of their action remain unclear. My work focused on REC114, MEI4, and IHO1 proteins. The aim of my thesis was to perform a biophysical and structural analysis of these protein factors and characterize the molecular details of their interactions.Constructs of IHO1 and the REC114-MEI4 sub-complex were produced in bacteria and then purified separately. Protein samples were characterized by several techniques (SEC-MALS, mass spectrometry and AUC) to determine their oligomeric states. The different analyses established that the IHO1 protein was tetrameric while the REC114-MEI4 sub-complex is present mainly in heterotrimeric form (2REC114/1MEI4). During this thesis, the interaction between the REC114-MEI4 sub-complex and the IHO1 protein was initially identified by size exclusion chromatography and then confirmed by ITC analyses. This work revealed the role of the N-terminal part of IHO1 and the PH domain of REC114 in this interaction. The structural characterization of the REC114-MEI4 complex and of the IHO1 protein alone or in a complex with REC114 was initiated by several techniques combining crystallography, nuclear magnetic resonance and electronic microscopy but still requires optimizations. Nevertheless, the modelling of the three-dimensional structure of the proteins by AlphaFold2 allowed us to obtain structural insight into the dimerization of REC114 and its interactions with MEI4 and IHOI. I identified residues involved in these interactions and their mutagenesis was used to validate the structural models in vitro. The in vivo characterization of the effect of these mutations is been performed in collaboration with the team of Dr. Bernard De Massy (IGH Montpellier). The results obtained during this work will be followed up with further structural and functional studies on these meiotic proteins, either alone or in the presence of additional partners.La mĂ©iose est une division cellulaire spĂ©cialisĂ©e des cellules germinales qui permet la production des gamĂštes haploĂŻdes en rĂ©duisant de moitiĂ© le nombre de chromosomes des cellules mĂšres. Ce processus est constituĂ© d’un cycle de rĂ©plication suivi de deux cycles de division : mĂ©iose I et mĂ©iose II. La rĂ©duction des chromosomes a lieu pendant la mĂ©iose I oĂč les chromosomes homologues d’origine maternelle et paternelle sont sĂ©parĂ©s. Cette sĂ©grĂ©gation rĂ©ductionnelle nĂ©cessite la formation de plusieurs cassures double-brin de l'ADN (DSB) et leur rĂ©paration par la recombinaison homologue, appelĂ©e Ă©galement recombinaison mĂ©iotique. Ce mĂ©canisme permet la crĂ©ation de liens physiques entre les chromosomes via des Ă©changes rĂ©ciproques d’informations gĂ©nĂ©tiques entre les homologues, ou crossing-over (CO). La formation d'au moins un CO, dit obligatoire, entre chaque paire d'homologues est requise pour une sĂ©grĂ©gation rĂ©ductionnelle appropriĂ©e. De plus, ce brassage gĂ©nĂ©tique permet de gĂ©nĂ©rer des diversitĂ©s gĂ©nĂ©tiques au sein des populations. Cependant, les erreurs de la mĂ©iose sont les principales causes d'aneuploĂŻdie, de malformations congĂ©nitales et d’infertilitĂ©.Lors de la recombinaison mĂ©iotique, la formation des DSB est catalysĂ©e par un complexe du type topoisomĂ©rase, composĂ© de l'enzyme SPO11 et de son partenaire de liaison TOPOVIBL. Toutefois, l’activitĂ© de ce complexe nĂ©cessite un ensemble partiellement conservĂ© de protĂ©ines rĂ©gulatrices, qui sont sept chez les mammifĂšres : REC114, MEI4, IHO1, HORMAD1/2, MEI1, ANKRD31. MalgrĂ© leurs importances lors de la formation des DSB, le rĂŽle exact de ces protĂ©ines et le mĂ©canisme molĂ©culaire de leurs actions ne sont pas bien caractĂ©risĂ©s. Mon travail s’est portĂ© sur les protĂ©ines REC114, MEI4, et IHO1. Le but de mon projet de thĂšse Ă©tait de rĂ©aliser une Ă©tude biophysique et structurale de ces facteurs protĂ©iques afin de comprendre leurs organisations et de caractĂ©riser les dĂ©tails molĂ©culaires de leurs interactions.Les constructions protĂ©iques d’IHO1 et du sous-complexe REC114-MEI4 ont Ă©tĂ© produites en bactĂ©rie puis purifiĂ©es sĂ©parĂ©ment. Les Ă©chantillons protĂ©iques ont Ă©tĂ© caractĂ©risĂ©s par plusieurs techniques (SEC-MALS, spectromĂ©trie de masse et AUC) pour dĂ©terminer leurs Ă©tats oligomĂ©riques. Les diffĂ©rentes analyses ont Ă©tabli que la protĂ©ine IHO1 est tĂ©tramĂ©rique alors que le sous-complexe REC114-MEI4 est prĂ©sent principalement sous forme hĂ©tĂ©rotrimĂ©rique en solution (2REC114/1MEI4). Durant cette thĂšse, l’interaction entre le sous-complexe REC114-MEI4 et la protĂ©ine IHO1 a Ă©tĂ© identifiĂ©e initialement par la chromatographie d’exclusion de taille, puis elle a Ă©tĂ© confirmĂ©e et son affinitĂ© a Ă©tĂ© caractĂ©risĂ©e par des analyses ITC. Ce travail a permis de mettre en Ă©vidence le rĂŽle de la partie N-terminale d’IHO1 et du domaine PH de REC114 pour cette interaction. La caractĂ©risation structurale du complexe REC114-MEI4 et de la protĂ©ine IHO1 seule ou en complexe a Ă©tĂ© initiĂ©e par plusieurs techniques combinant la cristallographie, la rĂ©sonance magnĂ©tique nuclĂ©aire et microscopie Ă©lectronique. Actuellement, des cristaux sont obtenus et sont en cours d’optimisation pour le fragment structurĂ© d’IHO1, tandis que la caractĂ©risation du complexe REC114-MEI4 par RMN et du complexe REC114-IHO1-MEI4 par la microscopie Ă©lectronique nĂ©cessite encore des optimisations. Par ailleurs, la modĂ©lisation de la structure tridimensionnelle des protĂ©ines par AlphaFold2 nous a permis d’identifier les rĂ©sidus impliquĂ©s dans la dimĂ©risation de REC114 et dans son interaction avec MEI4 et IHO1. Ceux-ci ont Ă©tĂ© mutĂ©s et analysĂ©s in vitro. Un projet de test in vivo de l’effet de ces mutations est en cours en collaboration avec l’équipe du Dr. Bernard De Massy (IGH Montpelier). Les rĂ©sultats obtenus durant ce travail seront poursuivis par des Ă©tudes structurales et fonctionnelles plus approfondies sur ces protĂ©ines mĂ©iotiques, seules ou en prĂ©sence de partenaires supplĂ©mentaires

    Characterization of the REC114‐MEI4‐IHO1 complex regulating meiotic DNA double‐strand break formation

    No full text
    Abstract Meiotic recombination is initiated by the formation of DNA double‐strand breaks (DSBs), essential for fertility and genetic diversity. In the mouse, DSBs are formed by the catalytic TOPOVIL complex consisting of SPO11 and TOPOVIBL. To preserve genome integrity, the activity of the TOPOVIL complex is finely controlled by several meiotic factors including REC114, MEI4, and IHO1, but the underlying mechanism is poorly understood. Here, we report that mouse REC114 forms homodimers, that it associates with MEI4 as a 2:1 heterotrimer that further dimerizes, and that IHO1 forms coiled‐coil‐based tetramers. Using AlphaFold2 modeling combined with biochemical characterization, we uncovered the molecular details of these assemblies. Finally, we show that IHO1 directly interacts with the PH domain of REC114 by recognizing the same surface as TOPOVIBL and another meiotic factor ANKRD31. These results provide strong evidence for the existence of a ternary IHO1‐REC114‐MEI4 complex and suggest that REC114 could act as a potential regulatory platform mediating mutually exclusive interactions with several partners

    TOPOVIBL-REC114 interaction regulates meiotic DNA double-strand breaks

    No full text
    Abstract Meiosis requires the formation of programmed DNA double strand breaks (DSBs), essential for fertility and for generating genetic diversity. DSBs are induced by the catalytic activity of the TOPOVIL complex formed by SPO11 and TOPOVIBL. To ensure genomic integrity, DNA cleavage activity is tightly regulated, and several accessory factors (REC114, MEI4, IHO1, and MEI1) are needed for DSB formation in mice. How and when these proteins act is not understood. Here, we show that REC114 is a direct partner of TOPOVIBL, and identified their conserved interacting domains by structural analysis. We then analysed the role of this interaction by monitoring meiotic DSBs in female and male mice carrying point mutations in TOPOVIBL that decrease or disrupt its binding to REC114. In these mutants, DSB activity was strongly reduced genome-wide in oocytes, and only in sub-telomeric regions in spermatocytes. In addition, in mutant spermatocytes, DSB activity was delayed in autosomes. These results provide evidence that REC114 is a key member of the TOPOVIL catalytic complex, and that the REC114/TOPOVIBL interaction ensures the efficiency and timing of DSB activity

    Structural analysis of Red1 as a conserved scaffold of the RNA-targeting MTREC/PAXT complex

    No full text
    International audienceTo eliminate specific or aberrant transcripts, eukaryotes use nuclear RNA-targeting complexes that deliver them to the exosome for degradation. S. pombe MTREC, and its human counterpart PAXT, are key players in this mechanism but inner workings of these complexes are not understood in sufficient detail. Here, we present an NMR structure of an MTREC scaffold protein Red1 helix-turn-helix domain bound to the Iss10 N-terminus and show this interaction is required for proper cellular growth and meiotic mRNA degradation. We also report a crystal structure of a Red1 - Ars2 complex explaining mutually exclusive interactions of hARS2 with various ED/EGEI/L motif-possessing RNA regulators, including hZFC3H1 of PAXT, hFLASH or hNCBP3. Finally, we show that both Red1 and hZFC3H1 homo-dimerize via their coiled-coil regions indicating that MTREC and PAXT likely function as dimers. Our results, combining structures of three Red1 interfaces with in vivo studies, provide mechanistic insights into conserved features of MTREC/PAXT architecture
    corecore