49 research outputs found

    The Signal Transducer and Activator of Transcription 1 (STAT1) Inhibits Mitochondrial Biogenesis in Liver and Fatty Acid Oxidation in Adipocytes

    Get PDF
    The transcription factor STAT1 plays a central role in orchestrating responses to various pathogens by activating the transcription of nuclear-encoded genes that mediate the antiviral, the antigrowth, and immune surveillance effects of interferons and other cytokines. In addition to regulating gene expression, we report that STAT1-/- mice display increased energy expenditure and paradoxically decreased release of triglycerides from white adipose tissue (WAT). Liver mitochondria from STAT1-/- mice show both defects in coupling of the electron transport chain (ETC) and increased numbers of mitochondria. Consistent with elevated numbers of mitochondria, STAT1-/- mice expressed increased amounts of PGC1α, a master regulator of mitochondrial biogenesis. STAT1 binds to the PGC1α promoter in fed mice but not in fasted animals, suggesting that STAT1 inhibited transcription of PGC1α. Since STAT1-/-mice utilized more lipids we examined white adipose tissue (WAT) stores. Contrary to expectations, fasted STAT1-/- mice did not lose lipid from WAT. β-adrenergic stimulation of glycerol release from isolated STAT1-/- WAT was decreased, while activation of hormone sensitive lipase was not changed. These findings suggest that STAT1-/- adipose tissue does not release glycerol and that free fatty acids (FFA) re-esterify back to triglycerides, thus maintaining fat mass in fasted STAT1-/- mice

    Stat3 oxidation-dependent regulation of gene expression impacts on developmental processes and involves cooperation with Hif-1α

    Get PDF
    © 2020 Grillo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Reactive oxygen species are bona fide intracellular second messengers that influence cell metabolism and aging by mechanisms that are incompletely resolved. Mitochondria generate superoxide that is dis-mutated to hydrogen peroxide, which in turn oxidises cysteine-based enzymes such as phosphatases, peroxiredoxins and redox-sensitive transcription factors to modulate their activity. Signal Transducer and Activator of Transcription 3 (Stat3) has been shown to participate in an oxidative relay with peroxiredoxin II but the impact of Stat3 oxidation on target gene expression and its biological consequences remain to be established. Thus, we created murine embryonic fibroblasts (MEFs) that express either WTStat3 or a redox-insensitive mutant of Stat3 (Stat3-C3S). The Stat3-C3S cells differed from WT-Stat3 cells in morphology, proliferation and resistance to oxidative stress; in response to cytokine stimulation, they displayed elevated Stat3 tyrosine phosphorylation and Socs3 expression, implying that Stat3-C3S is insensitive to oxidative inhibition. Comparative analysis of global gene expression in WT-Stat3 and Stat3-C3S cells revealed differential expression (DE) of genes both under basal conditions and during oxidative stress. Using differential gene regulation pattern analysis, we identified 199 genes clustered into 10 distinct patterns that were selectively responsive to Stat3 oxidation. GO term analysis identified down-regulated genes to be enriched for tissue/organ development and morphogenesis and up-regulated genes to be enriched for cell-cell adhesion, immune responses and transport related processes. Although most DE gene promoters contain consensus Stat3 inducible elements (SIEs), our chromatin immunoprecipitation (ChIP) and ChIP-seq analyses did not detect Stat3 binding at these sites in control or oxidant-stimulated cells, suggesting that oxidised Stat3 regulates these genes indirectly. Our further computational analysis revealed enrichment of hypoxia response elements (HREs) within DE gene promoters, implying a role for Hif-1. Experimental validation revealed that efficient stabilisation of Hif-1α in response to oxidative stress or hypoxia required an oxidation-competent Stat3 and that depletion of Hif-1α suppressed the inducible expression of Kcnb1, a representative DE gene. Our data suggest that Stat3 and Hif-1α cooperate to regulate genes involved in immune functions and developmental processes in response to oxidative stress

    Migraine and restless legs syndrome: is there an association?

    Get PDF
    Occasional clinical reports have suggested a link between migraine and restless legs syndrome. We undertook a systematic review of the evidence, which supports this association, and consider possible shared pathogenic mechanisms and the implications for current clinical practice

    Stress-induced dynamic regulation of mitochondrial STAT3 and its association with cyclophilin D reduces mitochondrial ROS production

    Get PDF
    Signal Transducer and Activator of Transcription 3 (STAT3) has been tied to various physiological and pathological functions, mainly as a transcription factor that translocates to the nucleus upon tyrosine phosphorylation induced by cytokine stimulation. In addition, a small pool of STAT3 resides in the mitochondria where it serves as a sensor for various metabolic stressors including reactive oxygen species (ROS). Mitochondrially-localized STAT3 largely exerts its effects through direct or indirect regulation of the activity of the electron transport chain (ETC). It has been assumed that STAT3 amounts in the mitochondria are static. We showed that various stimuli, including oxidative stress and cytokines, triggered a signaling cascade that resulted in a rapid loss of mitochondrially-localized STAT3. Recovery of the mitochondrial pool of STAT3 over time depended upon phosphorylation of Ser727 in STAT3 and new protein synthesis. Under these conditions, mitochondrially-localized STAT3 also became competent to bind to cyclophilin D (CypD). Binding of STAT3 to CypD was mediated by the N-terminus of STAT3, which was also important for reducing mitochondrial ROS production after oxidative stress. These results outline a role for mitochondrially-localized STAT3 in sensing and responding to external stimuli

    ‘We achieve the impossible’: discourses of freedom and escape at music festivals and free parties

    Get PDF
    In this article, we explore the notion of freedom as a form of governance within contemporary consumer culture in a sphere where ‘freedom’ appears as a key component: outdoor music-based leisure events, notably music festivals and free parties. ‘Freedom’ is commodified as central to the marketing of many music festivals, which now form a highly commercialised sector of the UK leisure industry, subject to various regulatory restrictions. Free parties, in contrast, are unlicensed, mostly illegal and far less commercialised leisure spaces. We present data from two related studies to investigate how participants at three major British outdoor music festivals and a small rural free party scene draw on discourses of freedom, escape and regulation. We argue that major music festivals operate as temporary bounded spheres of ‘licensed transgression’, in which an apparent lack of regulation operates as a form of governance. In contrast, free parties appear to ‘achieve the impossible’ by creating alternative (and illegal) spaces in which both freedom and regulation are constituted in different ways compared to music festival settings

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio
    corecore