59 research outputs found

    Applications of VirScan to broad serological profiling of bat reservoirs for emerging zoonoses

    Get PDF
    IntroductionBats are important providers of ecosystem services such as pollination, seed dispersal, and insect control but also act as natural reservoirs for virulent zoonotic viruses. Bats host multiple viruses that cause life-threatening pathology in other animals and humans but, themselves, experience limited pathological disease from infection. Despite bats’ importance as reservoirs for several zoonotic viruses, we know little about the broader viral diversity that they host. Bat virus surveillance efforts are challenged by difficulties of field capture and the limited scope of targeted PCR- or ELISA-based molecular and serological detection. Additionally, virus shedding is often transient, thus also limiting insights gained from nucleic acid testing of field specimens. Phage ImmunoPrecipitation Sequencing (PhIP-Seq), a broad serological tool used previously to comprehensively profile viral exposure history in humans, offers an exciting prospect for viral surveillance efforts in wildlife, including bats.MethodsHere, for the first time, we apply PhIP-Seq technology to bat serum, using a viral peptide library originally designed to simultaneously assay exposures to the entire human virome.ResultsUsing VirScan, we identified past exposures to 57 viral genera—including betacoronaviruses, henipaviruses, lyssaviruses, and filoviruses—in semi-captive Pteropus alecto and to nine viral genera in captive Eonycteris spelaea. Consistent with results from humans, we find that both total peptide hits (the number of enriched viral peptides in our library) and the corresponding number of inferred past virus exposures in bat hosts were correlated with poor bat body condition scores and increased with age. High and low body condition scores were associated with either seropositive or seronegative status for different viruses, though in general, virus-specific age-seroprevalence curves defied assumptions of lifelong immunizing infection, suggesting that many bat viruses may circulate via complex transmission dynamics.DiscussionOverall, our work emphasizes the utility of applying biomedical tools, like PhIP-Seq, first developed for humans to viral surveillance efforts in wildlife, while highlighting opportunities for taxon-specific improvements

    Evaluation of multi-assay algorithms for cross-sectional HIV incidence estimation in settings with universal antiretroviral treatment.

    Get PDF
    BACKGROUND: Multi-assay algorithms (MAAs) are used to estimate population-level HIV incidence and identify individuals with recent infection. Many MAAs use low viral load (VL) as a biomarker for long-term infection. This could impact incidence estimates in settings with high rates of early HIV treatment initiation. We evaluated the performance of two MAAs that do not include VL. METHODS: Samples were collected from 219 seroconverters (infected  1 year) in the HPTN 071 (PopART) trial; 28.8% of seroconverter samples and 73.2% of non-seroconverter samples had VLs ≤ 400 copies/mL. Samples were tested with the Limiting Antigen Avidity assay (LAg) and JHU BioRad-Avidity assays. Antibody reactivity to two HIV peptides was measured using the MSD U-PLEX assay. Two MAAs were evaluated that do not include VL: a MAA that includes the LAg-Avidity assay and BioRad-Avidity assay (LAg + BR) and a MAA that includes the LAg-Avidity assay and two peptide biomarkers (LAg + PepPair). Performance of these MAAs was compared to a widely used MAA that includes LAg and VL (LAg + VL). RESULTS: The incidence estimate for LAg + VL (1.29%, 95% CI: 0.97-1.62) was close to the observed longitudinal incidence (1.34% 95% CI: 1.17-1.53). The incidence estimates for the other two MAAs were higher (LAg + BR: 2.56%, 95% CI 2.01-3.11; LAg + PepPair: 2.84%, 95% CI: 1.36-4.32). LAg + BR and LAg + PepPair also misclassified more individuals infected > 2 years as recently infected than LAg + VL (1.2% [42/3483 and 1.5% [51/3483], respectively, vs. 0.2% [6/3483]). LAg + BR classified more seroconverters as recently infected than LAg + VL or LAg + PepPair (80 vs. 58 and 50, respectively) and identified ~ 25% of virally suppressed seroconverters as recently infected. CONCLUSIONS: The LAg + VL MAA produced a cross-sectional incidence estimate that was closer to the longitudinal estimate than two MAAs that did not include VL. The LAg + BR MAA classified the greatest number of individual seroconverters as recently infected but had a higher false recent rate

    Hypophysitis Secondary to Cytotoxic T-Lymphocyte-Associated Protein 4 Blockade: Insights into Pathogenesis from an Autopsy Series

    No full text
    Hypophysitis that develops in cancer patients treated with monoclonal antibodies blocking cytotoxic T-lymphocyte-associated protein 4 (CTLA-4; an inhibitory molecule classically expressed on T cells) is now reported at an incidence of approximately 10%. Its pathogenesis is unknown, in part because no pathological examination of the pituitary gland has been reported to date. We analyzed at autopsy the pituitary glands of six cancer patients treated with CTLA-4 blockade, one with clinical and pathological evidence of hypophysitis, one with mild lymphocytic infiltration in the pituitary gland but no clinical signs of hypophysitis, and four with normal pituitary structure and function. CTLA-4 antigen was expressed by pituitary endocrine cells in all patients but at different levels. The highest levels were found in the patient who had clinical and pathological evidence of severe hypophysitis. This high pituitary CTLA-4 expression was associated with T-cell infiltration and IgG-dependent complement fixation and phagocytosis, immune reactions that induced an extensive destruction of the adenohypophyseal architecture. Pituitary CTLA-4 expression was confirmed in a validation group of 37 surgical pituitary adenomas and 11 normal pituitary glands. The study suggests that administration of CTLA-4 blocking antibodies to patients who express high levels of CTLA-4 antigen in the pituitary can cause an aggressive (necrotizing) form of hypophysitis through type IV (T-cell dependent) and type II (IgG dependent) immune mechanisms
    • …
    corecore