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Abstract

Identifying physical interactions between proteins and other molecules is a critical aspect of

biological analysis. Here we describe PLATO, an in vitro method for mapping such interactions

by affinity enrichment of a library of full-length open reading frames displayed on ribosomes,

followed by massively parallel analysis using DNA sequencing. We demonstrate the broad utility

of the method by identifying known and new interacting partners of LYN kinase, patient

autoantibodies and the small molecules gefitinib and dasatinib.
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Several methods have been developed to characterize the specificities of protein-binding

molecules. Display technologies are typically limited to shorter polypeptides and cDNA-

based libraries suffer from highly non uniform clonal abundance distributions and incorrect

reading frames.1 Two-hybrid and split-reporter techniques,2 are limited to analyses of bait

molecules that can be presented within the cell, and are not suitable for drug or antibody

target identification. More recently, protein microarrays have been used for these purposes,3

but their construction typically requires individual proteins to be purified and arrayed,

resulting in substantial costs and various degrees of protein denaturation.

To address these limitations, we developed PLATO (ParalleL Analysis of Translated ORFs),

a method that combines in vitro display of full-length proteins with analysis by high-

throughput DNA sequencing. We demonstrate the utility of PLATO by performing diverse

interaction screens against the human ORFeome, a normalized collection of 15,483 cDNAs

in the Gateway cloning system.4

To express an ORF library in vitro, PLATO employs ribosome display, a technique used to

prepare a library of mRNA molecules that remain tethered to the proteins they encode by

lacking a stop codon.5 Ribosome display imposes minimal constraints on the length or

composition of proteins that can be efficiently displayed.

We constructed a Gateway cloning–compatible ribosome display ‘destination’ vector (pRD-

DEST; Supplementary Fig. 1), to be be used as a recipient for a normalized pool of ORF

‘entry’ clones. After recombination, DNA is amplified by PCR, yielding linear templates

lacking stop codons. Following in vitro transcription and translation, the ribosome-displayed

ORFeome can be screened for binding to immobilized bait(s). Enrichment of candidate

binding proteins can be rapidly assessed using quantitative real-time PCR (qPCR) with

ORF-specific primers, or en masse by deep sequencing of the enriched mRNAs (Fig. 1a).

Sequencing libraries can additionally be highly multiplexed, thereby reducing the cost of

each screen. All steps required for PLATO are compatible with automation using standard

liquid handling robotics.

Our strategy for deep sequencing of enriched display libraries employs recovery of the ORF

3′ termini, which minimizes interference from RNA degradation and ensures stoichiometric

correlation between tag counts and transcript abundance. To this end, we adopted the

following protocol: (i) chemically fragment enriched mRNAs; (ii) reverse transcribe

fragments using a common primer; (iii) polyadenylate cDNAs; (iv) add sample barcodes and

sequencing adapters using two-stage PCR amplification (Fig. 1b). Subsequent multiplex

deep sequencing analysis of pooled display libraries is reproducible and quantitative

(Supplementary Fig. 2). Sequencing a sample of unenriched human pRD-ORFeome mRNA

(input) detected the transcripts of 14,582 unique ORFs out of 15,483 total cDNAs in the

entry clone library (94%, Fig. 1c).

To test the ability of PLATO to identify protein-protein interactions, we used LYN, which

contains common structural components of the SRC family, including SH3, SH2 and kinase

domains,6 and has been extensively characterized for its interaction partners. After affinity

enrichment of the human ORFeome using GST-LYN, GST alone or an unrelated GST-fused
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protein (GST-Muted), we used Illumina sequencing to identify proteins specifically bound

by GST-LYN (Fig. 2a, Supplementary Table 1, Supplementary Fig. 3a). A number of

established LYN binding partners were among those identified, and we validated two by

qPCR (Fig. 2b).7, 8 We ranked candidate LYN interactors by their degree of enrichment on

GST-LYN, and confirmed five of seven tested by western blot analysis (Fig. 2c). Of the two

candidates not validated, one bound nonspecifically to GST, whereas the other was a true

negative. Among the highly enriched ORFs, SH2 domain-containing proteins were

overrepresented (P < 0.01, Fisher’s test). Consistent with a role for LYN

autophosphorylation in mediating these interactions, phosphatase treatment of immobilized

GST-LYN abolished binding of SH2D1A and SH2D4A, but only partly diminished PIK3R3

binding, suggesting the presence of an additional interaction domain (Supplementary Fig.

3b). These proteins have not previously been reported to interact with LYN.

We next asked whether PLATO could be used to identify protein targets of antibodies from

patients with autoimmune disease. We first examined target enrichment using to affinity

purified P53 and PDCD4 antibodies immobilized on protein A/G beads for library

immunoprecipitation. By qPCR, P53 and PDCD4 transcripts were robustly enriched by their

cognate antibodies, but not by control antibodies (Supplementary Fig. 4).

In previous work, we synthesized an oligonucleotide library encoding a 36-residue

overlapping human peptidome for display on bacteriophage T7 (T7-Pep). Deep sequencing

of affinity-enriched T7-Pep using autoimmune cerebrospinal fluid (CSF) from three

individuals with paraneoplastic neurological disorder (PND) uncovered known and novel

autoantigens.9 We screened these samples using PLATO. Unlike T7-Pep, the human

ORFeome is an incomplete collection of full-length proteins, and our findings reflect the

inherent complementarity of these libraries. For example, neuro-oncological ventral antigen

1 (NOVA1) is absent from the human ORFeome v5.1, and so PLATO was unable to detect

this known autoreactivity in patient A, whereas it was robustly identified with T7-Pep.

Conversely, PLATO identified numerous autoantigens for each patient that were missed in

our peptidome screens (Supplementary Table 2). For example, PLATO analysis of patients

A and B revealed immunoreactivity with known cancer autoantigens not detected with T7-

Pep. Several of these reactive antigens were selected for confirmation via

immunoprecipitation and western blotting (Fig. 2d, Supplementary Fig. 5a–d). In addition,

we had previously established that antibodies from patient C recognized the tripartite motif

containing proteins TRIM9 and TRIM67. PLATO considerably expanded the members of

the TRIM family recognized by antibodies in this patient’s CSF to include TRIM1/MID2,

TRIM18/MID1, TRIM54 and TRIM55 (Fig. 2e). Notably, multiple sequence alignment

results in tight clustering of this precise subset of the extended TRIM family, suggesting the

presence of shared, conformational epitopes not represented in T7-Pep.10 As an alternative

PLATO readout, hybridization of autoantibody-enriched libraries to custom oligonucleotide

microarrays revealed a similar list of autoantigens (Supplementary Fig. 6).

Discovering the targets of small molecules typically involves the use of cell extracts

containing a wide distribution of protein abundances, which limits the accuracy of detection

by mass spectrometry. Normalized ORF libraries and quantitative DNA sequencing might

therefore offer greater power to detect protein-small molecule interactions. We tested this
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idea with gefitinib, an inhibitor of epidermal growth factor receptor’s (EGFR) tyrosine

kinase domain. Gefitinib interacts with the ATP-binding pocket of EGFR and additional

tyrosine kinases.11 Analysis after ORFeome affinity enrichment on gefitinib-coupled beads

revealed significant enrichment of 10 out of the 17 predicted targets tested (Fig. 2f). This

experiment demonstrates the relative ease by which candidate protein interactions can be

assayed with PLATO; the binding of any ORF can be rapidly assessed using qPCR without

the need for cloning or western blotting. ORFeome libraries affinity enriched by the Src

family tyrosine kinase inhibitor dasatinib exhibited overrepresentation of protein kinases (P

= 0.0003; Fisher’s test), including the known target LCK and several targets not previously

associated with this compound (Supplementary Table 3).

PLATO’s limitations include incomplete ORFeome collections and a lack of protein post-

translational modifications. However, the quality, completeness and availability of these

libraries will continue to improve over time. In addition, very large ORF proteins may be

displayed less efficiently and proteins containing membrane-spanning or aggregation-prone

domains that normally require host cellular machinery for proper folding may aggregate;

these factors may complicate data analysis. Finally, ribosome display imposes certain

limitations on the conditions under which affinity enrichments can be performed (e.g. low

temperature and absence of RNAse contamination are essential), and using proteins

containing nucleic acid-binding domains as baits may result in non-specific binding. When

the required conditions for PLATO are met, however, this method provides three main

advantages as a tool for proteomic investigations. First, it has minimal protein size and

composition bias. Second, it has low cost and minimal instrument requirements. Finally, the

rapidly declining cost of DNA sequencing will make PLATO an ideal platform for projects

involving large numbers of samples, such as cohort-scale autoantibody profiling or

structure-activity relationship analyses of small-molecule compounds.

Online Methods

Plasmids and antibodies

A ribosome display (RD) backbone vector5 was modified by inserting a Gateway cassette

(attR1-ccdB-CMR-attR2) to create the pRD-DEST destination vector according to the

manufacturer’s instructions (Invitrogen). Human ORFeome library v5.1 entry clones were

pooled into eighteen super-pools (generally about ten 384-well entry plates per pool, based

on plate serial number). For each super-pool, one LR reaction was performed to recombine

the ORFs into the pRD-DEST vector. pDEST40 vector (Invitrogen) was used for transient

expression of ORFs in 293T cells. pDEST15 vector (Invitrogen) was used for production of

N-terminally GST-fused LYN (GST-LYN), MUTED (GST-MUTED) or control peptide

(GST-Pep, DYKDDDDK) in BL21 E. coli. The antibodies used in this study include: rabbit

IgG polyclonal antibody (Cat No. 2729, Cell Signaling), anti-p53 polyclonal antibody (Cat

No. 9282, Cell Signaling), anti-PDCD4 polyclonal antibody (Cat No. A301-106A, Bethyl

Lab), anti-RBM15 polyclonal antibody (Cat No. A300-821A, Bethyl Lab), and anti-V5

monoclonal antibody (Cat No. R960-25, Invitrogen).
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Patient samples

PND cerebrospinal fluid samples were described previously.9

Ribosome display of human ORFeome v5.1

T7B and TolAk (0.2 μM) primers were used to PCR amply the pRD-ORFeome template (50

ng) by PrimeSTAR® HS PCR Kit (Takara). The following thermal cycles were used: 98°C,

2 min/98°C, 10 sec; 55°C, 10 sec; 72°C, 8 min; 10 cycles. The PCR product was purified

using QIAquick®. PCR Purification Kit (Qiagen). The purified PCR products of all eighteen

super-pools were combined together in equal amounts (by weight). In vitro transcription was

performed using T7 Ribomax Large in vitro Transcription Kit according to the manufacturer

(Promega). RNA products were purified using RNeasy® column (Qiagen). In vitro

translation was performed using RTS 100 E. coli HY Kit (5Prime). 7.5 μg mRNA in a 50 μl

reaction containing 1 μl RNAseOUT (Invitrogen) was subjected to in vitro translation

performed on PCR machine at 30 °C for 15 min. 12.5 μl aliquots of each translation reaction

was diluted with 85.5 μl ice cold RD selection buffer (RD wash buffer (50 mM Tris Acetate,

150 mM NaCl, pH to 7.5 50 mM Mg Acetate, 0.5% Tween 20), 2.5 mg/ml heparin, 1%

BSA, 100 μg/ml yeast tRNA with 2 μl RNAseOUT. The reaction mixture was centrifuged at

14,000 × g for 5 min at 4 °C. The supernatant was then moved to a new, ice cold tube.

ORFeome precipitation

GST-protein coated bead preparation: Expression of GST-Pep, GST-LYN and GST-

MUTED was induced with 0.1 mM IPTG at 30 °C for 4 hours. Cells were pelleted and lysed

in lysis buffer (50 mM Tris-HCl pH 8.0, 100 mM NaCl, 0.5 mM EDTA, 5 mM MgCl2,

0.2% NP-40, 2 mM DTT, 0.2 mM PMSF, 1 μg/ml pepstatin, 1 μg/ml aprotinin, 1 μg/ml

leupeptin, 200 μg/ml lysozyme) on ice for 1 hour. The lysate was sonicated for 1 min on ice

(Branson; output 4.0, duty cycle 50%). The lysate was centrifuged and supernatant retained.

MagneGST™ glutathione particles (Promega) were coated with lysate at 4 °C for 4 hours.

Beads were washed with buffer I (50 mM Tris pH 7.5, 500 mM NaCl, 1 mM EGTA, 10%

Glycerol, 0.1% TritonX-100, 0.1% beta-mercaptoethanol, 1 mM PMSF) three times and

buffer II (50 mM HEPES pH 7.5, 100 mM NaCl, 1 mM EGTA, 10% Glycerol, 0.1% beta-

mercaptoethanol, 1 mM PMSF) three times. To assess LYN phosphotyrosine binding

dependence, 20 μl glutathione particles containing approximately 2 μg protein were treated

with 400 units of Lambda protein phosphatase (NEB) in 1× Protein MetalloPhosphatases

buffer (50 mM HEPES, 100 mM NaCl, 2 mM DTT, 0.01 % Brij 35 and 1 mM MnCl2) at 30

°C for 30 min with agitation. Patient antibody coated bead preparation: PND patient

cerebrospinal fluid (CSF) containing 2.0 μg of immunoglobulin or 2.0 μg of rabbit IgG in

400 μl 1× PBST (3.2 mM Na2HPO4, 0.5 mM KH2PO4, 1.3 mM KCl, 135 mM NaCl, 0.05%

Tween 20, pH 7.4) containing 1% acetylated bovine serum albumin (BSA) (Cat No. B2518,

Sigma-Aldrich) were incubated with protein A/G magnetic beads (Invitrogen) at 4 °C

overnight. Beads were washed with RD wash buffer five times. Drug coated bead

preparation: gefitinib was immobilized on magnetic beads using a procedure previously

described for covalently attaching the drug to sepharose 6B beads.13 Biotinylated dasatinib

(biotin-dasatinib, 500 μM) was immobilized on 50 μl of Dynabeads® MyOne™ Straptavidin

T1 beads (Invitrogen) by incubation in 1× PBST containing 10% DMSO at 4°C overnight.
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An equal amount of biotin (Sigma) was immobilized on beads as negative control. For all

bead types: Beads were next blocked with RD selection buffer at 4°C for 2 hours. 100 μl of

the ice cold RD selection buffer containing the translated ORFeome library was then

incubated with the beads at 4 °C for 6 hours while rotating. For competition experiments,

free biotin-dasatinib (100 μM) was pre-incubated with the translated ORFeome library at

4°C for 2 hours prior to the incubation of the library with biotin-dasatinib beads. Beads were

then washed six times with 500 μl ice cold RD wash buffer. After the final wash, ribosomal

complexes were disrupted by resuspension in 50 μl EB20 elution buffer (50 mM Tris

Acetate pH 7.5, 150 mM NaCl, 20 mM EDTA) containing 1 μl RNAseOUT while rotating

at 37°C for 10 min. The eluted mRNA was then purified using an RNeasy® column

(Qiagen).

RT-qPCR analysis of precipitated ORFs

Eluted mRNA samples were reverse transcribed using the primer PRDREV (0.1 μM) and

SuperScript® III Reverse Transcriptase according to the manufacturer. The primer pair

targeting the 3′ end of the corresponding ORF (0.1 μM each) was used to measure its mRNA

level with Platinum® SYBR® Green qPCR SuperMix (Cat No. 11744, Invitrogen) on a 7500

Fast PCR-System (Applied Biosystems) The following thermal cycles were used for qPCR:

95 °C, 1 min/95 °C, 5 sec; 60 °C, 30 sec; 40 cycles.

mRNA sample preparation and Illumina sequencing

Recovered mRNA samples were fragmented using NEBNext®Magnesium RNA

Fragmentation Module (NEB). The reaction was performed in a preheated thermal cycler for

3 min at 94 °C. Fragmented mRNA was cleaned up using Spin-50 mini-column (USA

Scientific) and subjected to reverse transcription (RT) using SuperScript® III Reverse

Transcriptase (Invitrogen) and the TolA100RT primer (0.1 μM). After RT, the primer was

removed by Exonuclease I (TaKaRa) digestion at 37 °C for 30 min. The mRNA template

was then removed by incubation with RNase H (Invitrogen) at 37 °C for 30 min. cDNA was

purified using QIAquick® PCR Purification Kit (Qiagen). Polyadenylation of cDNA 3′ end

was performed using a TdT reaction kit (Invitrogen) according to the manufacturer. The

TdT product was purified using QIAquick® PCR Purification Kit. The 1st PCR was

performed using 0.25 μl Herculase II Fusion DNA Polymerase (Agilent), TdT product as the

template, and 0.2 μM reverse primer Adaptor-(dT)24 in 25 μl volume. A single thermal cycle

was performed: 95°C, 2 min/50°C, 1 min/72°C, 7 min. The forward primer, 0.2 μM P5-

PRDREV was then added in an additional 25 μl PCR mixture. The following thermal cycles

were then performed: 95°C, 2 min/95°C, 20 sec; 55°C, 30 sec; 72°C, 1 min; 30 cycles/72°C,

5 min. The 1st PCR product was purified using QIAquick PCR Purification Kit. The 2nd

PCR was composed of 0.5 μl Herculase II Fusion DNA Polymerase, 100 ng 1st PCR product

as DNA template, and 0.2 μM primers (forward, P5-PRDREV; reverse, INDEX primer).

The following thermal cycles were then performed: 95°C, 2 min/95°C, 20 sec; 55°C, 30 sec;

72°C, 1 min; 10 cycles/72°C, 5 min. The 2nd PCR product was purified using QIAquick

PCR Purification Kit. The purified 2nd PCR product was quantified on a 7500 Fast PCR-

System (Applied Biosystems) using Platinum® SYBR® Green qPCR SuperMix

(Invitrogen), and 2 μl of 5 μM P5 and P7_2 mix. The following thermal cycles were used: 50

°C, 2 min/95 °C, 10 min/95 °C, 15 sec; 60 °C, 2 min; 35 cycles. An equal amount of each
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2nd PCR product was combined and sequenced on the Illumina HiSeq 2000 using a 50 cycle,

multiplex single-end protocol with the custom primer, PRDREV-attB2-SP.

Analysis of Illumina data

Sequences were aligned using the Bowtie software, version 0.12.7. An index file was

constructed using the 50 3′-most nucleotides of each sequence from the ORFeome v5.1.

Alignments were performed using the following parameters: -n 2 -l 30 --best --nomaqround

--norc -k 1. A single mismatch was allowed in the 7 nucleotide barcode sequence which was

used to assign each read to the appropriate sample library. We typically obtained between 5

and 10 million aligned reads per barcoded library. The alignments corresponding to each

ORF were then aggregated, thus defining each library’s read count vector. We considered

only ORFs with an IP count greater than a certain threshold. Enrichment was then calculated

by adding a pseudocount of 1 to each clone and then dividing the fractional abundance of

each IP’ed clone by that in the appropriate negative control. For LYN IP’s the negative

control was GST-Pep or GST-MUTED, and for PND IP’s the negative control was rabbit

IgG. For biotin-dasatinib, the negative control was biotin.

Validation of candidate interactions

pDEST40 plasmid harboring candidate ORFs was transiently transfected into 293T cells

using Fugene® HD transfection reagent (Promega) according to the manufacturer. 48 hours

post transfection, cells were harvested in 1 ml of 1× RIPA buffer (50 mM Tris-HCl pH 7.4,

1% NP-40, 0.25% Na deoxycholate, 150 mM NaCl, and 1 mM EDTA) containing protease

inhibitor cocktail (1 mM PMSF, 1 μg/ml aprotinin, 1 μg/ml leupeptin, and 1 μg/ml pepstatin)

and phosphatase inhibitor cocktail (Sigma). Precipitation was performed by incubating

either bait-coated glutathione or protein A/G beads with the 293T cell lysates at 4 °C

overnight with rotating. Beads were washed with ice cold 1x RIPA buffer six times and

eluted in 2× Laemmli sample buffer. Samples were then separated on a SDS-PAGE gel. An

anti-V5 antibody was used to detect the presence of candidate proteins after transfer onto a

PVDF membrane.

Microarray hybridization

Eluted mRNAs IP’ed from mixed PND sample (patient A:patient C = 1:1) was reverse

transcribed using the primer PRDREV (as above). PCR was performed using cDNA as

template, attB1 and attB2 (0.2 μM) primers by PrimeSTAR® HS PCR Kit. PCR products

were recombined into entry vector pDONR223 by BP reaction. After transformation into

DH5αE. coli, entry clones were recovered and then recombined into the destination vector

pRD-DEST with the LR reaction. After transformation into DH5αE. coli, LR clones were

recovered and subjected to PCR using T7B and TolAk primers. PCR products were purified

for T7 in vitro transcription using MEGAscript® T7 Kit according to the manufacturer’s

instructions (Ambion). In vitro transcribed PND affinity purified sample mRNAs were

labeled with Cy3 dye. The total input in vitro transcribed ORFeome mRNAs were labeled

with Cy5 dye. Cy3 and Cy5-labeled RNAs were mixed (1:1) and hybridized on our custom

human ORFeome microarrays (Agilent).14
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Parallel analysis of in vitro translated ORFs (PLATO). (a) ORF display scheme. The pooled

human ORFeome v5.1 entry vector library is is attL-attR (“LR”) recombined into the pRD-

DEST expression vector. Expression plasmids are PCR amplified to generate the DNA

templates for in vitro transcription. Following in vitro translation, the protein-mRNA-

ribosome complexes are incubated with protein, antibody or small-molecule bait

immobilized on beads. The enriched mRNA library is recovered from bait-prey bead

complexes for further analysis. (b) Processing of mRNA samples for deep DNA sequencing.

After fragmentation and reverse transcription (RT) using a universal primer to recover the 3′

end of ORFeome transcripts, cDNA is polyadenylated with terminal deoxynucleotide

transferase (TdT) and amplified for multiplex deep sequencing using primers containing a

sample barcode and the P5 and P7 Illumina sequencing adaptors. (c) Sequencing reads of the

unenriched human pRD-ORFeome mRNA library (the ‘input’ library). Most ORFs were

sequenced at least once.
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Figure 2.
Identification of known and previously undescribed interactions using PLATO. (a)

Interactions with LYN tyrosine-protein kinase. Scatter plot of each ORF’s sequencing reads

after enrichment on GST-LYN or GST. Several known and undescribed LYN binding

candidates are highlighted in red. (b) Enrichment of two known interactors of LYN. Data

were normalized to the GST enriched libraries (n=3, mean ± s.d.; *, P < 0.01; t test). (c)

Confirmation of known and predicted LYN binding proteins by affinity precipitation-

western blotting of lysates from HEK 293T cells transiently overexpressing the individual

V5-His-tagged candidate proteins. (d) Confirmation of previously unidentified autoantigens

from a PND patient. (e) Interactions with autoantibodies. Enrichment ranking of PND

autoantigens identified using CSF from patient C. (f) Interactions with a small molecule.

Enrichment of previously identified targets of gefitinib. Data were normalized to the control-

enriched libraries (n=3, mean ± s.d.; *, P < 0.05; t test).
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