330 research outputs found

    Measuring effective electroweak couplings in single top production at the LHC

    Full text link
    We study the mechanism of single top production at the LHC in the framework of an effective electroweak Lagrangian, analyzing the sensitivity of different observables to the magnitude of the effective couplings that parametrize new physics beyond the Standard Model. The observables relevant to the distinction between left and right effective couplings involve in practice the measurement of the spin of the top and this can be achieved only indirectly by measuring the angular distribution of its decay products. We show that the presence of effective right-handed couplings implies that the top is not in a pure spin state. A unique spin basis is singled out which allows one to connect top decay products angular distribution with the polarized top differential cross section. We present a complete analytical expression of the differential polarized cross section of the relevant perturbative subprocess including general effective couplings. The mass of the bottom quark, which actually turns out to be more relevant than naively expected, is retained. Finally we analyze different aspects the total cross section relevant to the measurement of new physics through the effective couplings. The above analysis also applies to anti-top production in a straightforward way.Comment: 38 pages, 17 figure

    Assessing the Biohazard Potential of Putative Martian Organisms for Exploration Class Human Space Missions

    Get PDF
    Exploration Class missions to Mars will require precautions against potential contamination by any native microorganisms that may be incidentally pathogenic to humans. While the results of NASA's Viking biology experiments of 1976 have been generally interpreted as inconclusive for surface organisms, the possibility of native surface life has never been ruled out and more recent studies suggest that the case for biological interpretation of the Viking Labeled Release data may now be stronger than it was when the experiments were originally conducted. It is possible that, prior to the first human landing on Mars, robotic craft and sample return missions will provide enough data to know with certainty whether or not future human landing sites harbor extant life forms. However, if native life is confirmed, it will be problematic to determine whether any of its species may present a medical risk to astronauts. Therefore, it will become necessary to assess empirically the risk that the planet contains pathogens based on terrestrial examples of pathogenicity and to take a reasonably cautious approach to bio-hazard protection. A survey of terrestrial pathogens was conducted with special emphasis on those pathogens whose evolution has not depended on the presence of animal hosts. The history of the development and implementation of Apollo anticontamination protocol and recent recommendations of the NRC Space Studies Board regarding Mars were reviewed. Organisms can emerge in nature in the absence of indigenous animal hosts and both infectious and non-infectious human pathogens are theoretically possible on Mars. The prospect of Martian surface life, together with the existence of a diversity of routes by which pathogenicity has emerged on Earth, suggests that the possibility of human pathogens on Mars, while low, is not zero. Since the discovery and study of Martian life can have long-term benefits for humanity, the risk that Martian life might include pathogens should not be an obstacle to human exploration. As a precaution, however, it is recommended that EVA suits be decontaminated when astronauts enter surface habitats when returning from field activity and that biosafety protocol approximating laboratory BSL 2 be developed for astronauts working in laboratories on the Martian surface. Quarantine of astronauts and Martian materials arriving on Earth should also be part of a human Mars mission and this and the surface biosafety program should be integral to human expeditions from the earliest stages of the mission planning

    Hadron Collider Signatures for New Interactions of Top and Bottom Quarks

    Full text link
    One of the main goals for hadron colliders is the study of the properties of the third generation quarks. We study the signatures for new TeV resonances that couple to top or bottom quarks both at the Tevatron Run II and at the LHC. We find that in the simplest production processes of Drell-Yan type at the Tevatron, the signals are overwhelmed by QCD backgrounds. We also find that it is possible to study these resonances when they are produced in association with a pair of heavy quarks or in association with a single top at the LHC.In particular, with an integrated luminosity of 300 fb1^{-1} at the LHC, it is possible to probe resonance masses up to around 2 TeV.Comment: 24 pages, 15 figures, Minor corrections, version to appear in Phys. Rev.

    Searching for a light Fermiophobic Higgs Boson at the Tevatron

    Get PDF
    We propose new production mechanisms for light fermiophobic Higgs bosons (hfh_f) with suppressed couplings to vector bosons (VV) at the Fermilab Tevatron. These mechanisms (e.g. qqH±hfqq'\to H^\pm h_f) are complementary to the conventional process qqVhfqq'\to Vh_f, which suffers from a strong suppression of 1/tan2β1/\tan^2\beta in realistic models with a hfh_f. The new mechanisms extend the coverage at the Tevatron Run II to the larger tanβ\tan\beta region, and offer the possibility of observing new event topologies with up to 4 photons.Comment: 15 pages, including 5 eps-figure

    Single top production associated with a neutral scalar at LHC in topcolor-assisted technicolor

    Full text link
    The topcolor-assisted technicolor (TC2) model predicts a number of neutral scalars like the top-pion (πt0\pi^0_t) and the top-Higgs (ht0h^0_t). These scalars have flavor-changing neutral-current (FCNC) top quark couplings, among which the top-charm transition couplings may be sizable. Such FCNC couplings induce single top productions associated with a neutral scalar at the CERN Large Hadron Collider (LHC) through the parton processes cgtπt0cg \to t \pi_t^0 and cgtht0cg \to t h_t^0. In this note we examine these productions and find their production rates can exceed the 3σ3\sigma sensitivity of the LHC in a large part of parameter space. Since in the Standard Model and the minimal supersymmetric model such rare productions have unobservably small production rates at the LHC, these rare processes will serve as a good probe for the TC2 model.Comment: 7 pages, 3 fig

    Single Top Production as a Window to Physics Beyond the Standard Model

    Get PDF
    Production of single top quarks at a high energy hadron collider is studied as a means to identify physics beyond the standard model related to the electroweak symmetry breaking. The sensitivity of the ss-channel WW^* mode, the tt-channel WW-gluon fusion mode, and the \tw mode to various possible forms of new physics is assessed, and it is found that the three modes are sensitive to different forms of new physics, indicating that they provide complimentary information about the properties of the top quark. Polarization observables are also considered, and found to provide potentially useful information about the structure of the interactions of top.Comment: References added and minor discussion improvements; results unchanged; Version to be published in PR

    Genes regulated by estrogen in breast tumor cells in vitro are similarly regulated in vivo in tumor xenografts and human breast tumors

    Get PDF
    BACKGROUND: Estrogen plays a central role in breast cancer pathogenesis. Although many studies have characterized the estrogen regulation of genes using in vitro cell culture models by global mRNA expression profiling, it is not clear whether these genes are similarly regulated in vivo or how they might be coordinately expressed in primary human tumors. RESULTS: We generated DNA microarray-based gene expression profiles from three estrogen receptor α (ERα)-positive breast cancer cell lines stimulated by 17β-estradiol (E2) in vitro over a time course, as well as from MCF-7 cells grown as xenografts in ovariectomized athymic nude mice with E2 supplementation and after its withdrawal. When the patterns of genes regulated by E2 in vitro were compared to those obtained from xenografts, we found a remarkable overlap (over 40%) of genes regulated by E2 in both contexts. These patterns were compared to those obtained from published clinical data sets. We show that, as a group, E2-regulated genes from our preclinical models were co-expressed with ERα in a panel of ERα+ breast tumor mRNA profiles, when corrections were made for patient age, as well as with progesterone receptor. Furthermore, the E2-regulated genes were significantly enriched for transcriptional targets of the myc oncogene and were found to be coordinately expressed with Myc in human tumors. CONCLUSION: Our results provide significant validation of a widely used in vitro model of estrogen signaling as being pathologically relevant to breast cancers in vivo

    Two-loop Barr-Zee type Contributions to (g2)μ(g-2)_\mu in the MSSM

    Full text link
    We consider the contribution of a two-loop Barr-Zee type diagram to (g2)μ(g-2)_\mu in the minimal supersymmetric standard model (MSSM). At relatively large tanβ\tan\beta, we show that the contribution of light third generation scalar fermions and neutral CP-even Higgs, h0(H0)h^0(H^0), can easily explain the very recent BNL experimental data. In our analysis (g2)μ(g-2)_\mu prefers negative AfA_{f} and positive μ\mu. It is more sensitive to the chirality flipping h^0(H^0)\wt{f}_R^*\wt{f}_L rather than chirality conserving couplings.Comment: 10 pages, 5 figures, references adde
    corecore