15 research outputs found

    Vascular Flora of Hooper Branch Savanna Nature Preserve, Iroquois County, Illinois

    Get PDF
    INHS Technical Report prepared for Illinois Department of Natural Resources, Division of Natural Heritag

    Vascular Flora of Iroquois County Conservation Areas, Iroquois County, Illinois

    Get PDF
    INHS Technical Report prepared for Illinois Department of Natural Resources, Division of Natural Heritag

    A Site Inventory of the Emiquon Preserve, Fulton County, Illinois

    No full text
    ID: 8997; issued April 1, 2004INHS Technical Report prepared for Nature Conservancy, Illinois Chapter, PeoriaLimitedINHS Staff asked that this be restricted because report contains sensitive information

    Interferon-driven deletion of antiviral B cells at the onset of chronic infection

    Get PDF
    Inadequate antibody responses and perturbed B cell compartments represent hallmarks of persistent microbial infections, but the mechanisms whereby persisting pathogens suppress humoral immunity remain poorly defined. Using adoptive transfer experiments in the context of a chronic lymphocytic choriomeningitis virus (LCMV) infection of mice, we have documented rapid depletion of virus-specific B cells that coincided with the early type I interferon response to infection. We found that the loss of activated B cells was driven by type I interferon (IFN-I) signaling to several cell types including dendritic cells, T cells and myeloid cells. Intriguingly, this process was independent of B cell-intrinsic IFN-I sensing and resulted from biased differentiation of naïve B cells into short-lived antibody-secreting cells. The ability to generate robust B cell responses was restored upon IFN-I receptor blockade or, partially, when experimentally depleting myeloid cells or the IFN-I-induced cytokines interleukin 10 and tumor necrosis factor alpha. We have termed this IFN-I-driven depletion of B cells "B cell decimation". Strategies to counter "B cell decimation" should thus help us better leverage humoral immunity in the combat against persistent microbial diseases

    From “Green” Aerogels to Porous Graphite by Emulsion Gelation of Acrylonitrile

    No full text
    Porous carbons, including carbon (C-) aerogels, are technologically important materials, while polyacrylonitrile (PAN) is the main industrial source of graphite fiber. Graphite aerogels are synthesized herewith pyrolytically from PAN aerogels, which in turn are prepared first by solution copolymerization in toluene of acrylonitrile (AN) with ethylene glycol dimethacrylate (EGDMA) or 1,6-hexanediol diacrylate (HDDA). Gelation is induced photochemically and involves phase-separation of “live” nanoparticles that get linked covalently into a robust 3D network. The goal of this work was to transfer that process into aqueous systems and obtain similar nanostructures in terms of particle sizes, porosity, and surface areas. That was accomplished by forcing the monomers into (micro)emulsions, in essence inducing phase-separation of virtual primary particles before polymerization. Small angle neutron scattering (SANS) in combination with location-of-initiator control experiments support that monomer reservoir droplets feed polymerization in ∼3 nm radius micelles yielding eventually large (∼60 nm) primary particles. The latter form gels that are dried into macro-/mesoporous aerogels under ambient pressure from water. PAN aerogels by either solution or emulsion gelation are aromatized (240 °C, air), carbonized (800 °C, Ar), and graphitized (2300 °C, He) into porous structures (49-64% v/v empty space) with electrical conductivities \u3e5× higher than those reported for other C-aerogels at similar densities. Despite a significant pyrolytic loss of matter (up to 50-70% w/w), samples shrink conformally (31-57%) and remain monolithic. Chemical transformations are followed with CHN analysis, 13C NMR, XRD, Raman, and HRTEM. Materials properties are monitored by SEM and N 2-sorption. The extent and effectiveness of interparticle connectivity is evaluated by quasi-static compression. Overall, irrespective of the gelation method, PAN aerogels and the resulting carbons are identical materials in terms of their chemical composition and microstructure. Although cross-linkers EGDMA and HDDA decompose completely by 800 °C, surprisingly their signature in terms of different surface areas, crystallinity, and electrical conductivities is traced in all the pyrolytic products. © 2011 American Chemical Society
    corecore