213 research outputs found

    Characteristics of U.S. Agricultural Communications Undergraduate Programs

    Get PDF
    This study characterized agricultural communications undergraduate programs nationwide. A total of 40 undergraduate agricultural communications programs were identified via the National Agricultural Communicators of Tomorrow database, Internet searches, and previous academic program research, and their existences were verified via multiple sources. Objectives included creating an accounting of existing programs, describing the programs’ demographics, and identifying top programs. This study employed a census approach and used a descriptive survey design, including both quantitative and structured qualitative questions. The quantitative data were analyzed via descriptive statistics. A total of 26 respondents — faculty representing U.S. undergraduate agricultural communications programs — participated in this study. An increase in the number of academic programs across the U.S. was observed, compared to the last similar study published in 2000, suggesting an increase in popularity and student demand, which is most likely a result of an increase in industry demand for agricultural communications graduates. While programs varied in size and age, most faculty respondents projected an increase in enrollment in their undergraduate programs. Future studies characterizing the discipline should be conducted on a more frequent, standardized schedule, and improved participation in the study should be a goal. National curriculum studies also should be conducted to tie program characteristics and instructional methodologies to program success and to correlate program characteristics and demographics

    The sedimentation of an institution: changing governance in UK financial services

    Get PDF
    Post-print version. Final version published by Sage; available online at http://jmi.sagepub.com/The Financial Services Act (FSA) 1986 was the first comprehensive attempt to create a unified statutorily based system of regulation within the UK financial sector. It generated a framework of regulation that is in a continuous state of development and modification. In this paper we study the development of UK financial regulation between 1986 and 2011. We trace how competing theorizations and logics of regulation have led to the institutionalization of a meta-form of financial regulation. In doing so, we address the conundrum of conscious, strategic theorizations leading to cognitive taken-for-granted institutions by identifying four catalysts that contribute to institutionalization when concurring with theorization. These are: the evocation of political ideologies, the appropriation of scandals, the growing number of actors and the increasing organization of actors. Finally, we argue that sedimentation is the appropriate metaphor for the version of institutionalization occurring in this setting

    Overcoming real-world obstacles in 21 cm power spectrum estimation: A method demonstration and results from early Murchison Widefield Array data

    Get PDF
    We present techniques for bridging the gap between idealized inverse covariance weighted quadratic estimation of 21 cm power spectra and the real-world challenges presented universally by interferometric observation. By carefully evaluating various estimators and adapting our techniques for large but incomplete data sets, we develop a robust power spectrum estimation framework that preserves the so-called "Epoch of Reionization (EoR) window" and keeps track of estimator errors and covariances. We apply our method to observations from the 32-tile prototype of the Murchinson Widefield Array to demonstrate the importance of a judicious analysis technique. Lastly, we apply our method to investigate the dependence of the clean EoR window on frequency—especially the frequency dependence of the so-called “wedge" feature—and establish upper limits on the power spectrum from z ¼ 6.2 to z ¼ 11:7. Our lowest limit is ?ðkÞ < 0.3 Kelvin at 95% confidence at a comoving scale k ¼ 0.046 Mpc-1 and z ¼ 9.5

    Low Radio Frequency Observations and Spectral Modelling of the Remnant of Supernova 1987A

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. ©: 2016 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.We present Murchison Widefield Array observations of the supernova remnant (SNR) 1987A between 72 and 230 MHz, representing the lowest frequency observations of the source to date. This large lever arm in frequency space constrains the properties of the circumstellar medium created by the progenitor of SNR 1987A when it was in its red supergiant phase. As of late-2013, the radio spectrum of SNR 1987A between 72 MHz and 8.64 GHz does not show any deviation from a non-thermal power-law with a spectral index of 0.74±0.02-0.74 \pm 0.02. This spectral index is consistent with that derived at higher frequencies, beneath 100 GHz, and with a shock in its adiabatic phase. A spectral turnover due to free-free absorption by the circumstellar medium has to occur below 72 MHz, which places upper limits on the optical depth of \leq 0.1 at a reference frequency of 72 MHz, emission measure of \lesssim 13,000 cm6^{-6} pc, and an electron density of \lesssim 110 cm3^{-3}. This upper limit on the electron density is consistent with the detection of prompt radio emission and models of the X-ray emission from the supernova. The electron density upper limit implies that some hydrodynamic simulations derived a red supergiant mass loss rate that is too high, or a wind velocity that is too low. The mass loss rate of 5×106\sim 5 \times 10^{-6} MM_{\odot} yr1^{-1} and wind velocity of 10 km s1^{-1} obtained from optical observations are consistent with our upper limits, predicting a current turnover frequency due to free-free absorption between 5 and 60 MHz.Peer reviewedFinal Published versio

    GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey I : A low-frequency extragalactic catalogue

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2016 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Using the Murchison Widefield Array (MWA), the low-frequency Square Kilometre Array (SKA1 LOW) precursor located in Western Australia, we have completed the GaLactic and Extragalactic All-sky MWA (GLEAM) survey, and present the resulting extragalactic catalogue, utilising the first year of observations. The catalogue covers 24,831 square degrees, over declinations south of +30+30^\circ and Galactic latitudes outside 1010^\circ of the Galactic plane, excluding some areas such as the Magellanic Clouds. It contains 307,455 radio sources with 20 separate flux density measurements across 72--231MHz, selected from a time- and frequency- integrated image centred at 200MHz, with a resolution of 2\approx 2'. Over the catalogued region, we estimate that the catalogue is 90% complete at 170mJy, and 50% complete at 55mJy, and large areas are complete at even lower flux density levels. Its reliability is 99.97% above the detection threshold of 5σ5\sigma, which itself is typically 50mJy. These observations constitute the widest fractional bandwidth and largest sky area survey at radio frequencies to date, and calibrate the low frequency flux density scale of the southern sky to better than 10%. This paper presents details of the flagging, imaging, mosaicking, and source extraction/characterisation, as well as estimates of the completeness and reliability. All source measurements and images are available online (http://www.mwatelescope.org/science/gleam-survey). This is the first in a series of publications describing the GLEAM survey results.Peer reviewedFinal Published versio

    Low-Frequency Spectral Energy Distributions of Radio Pulsars Detected with the Murchison Widefield Array

    Get PDF
    We present low-frequency spectral energy distributions of 60 known radio pulsars observed with the Murchison Widefield Array telescope. We searched the GaLactic and Extragalactic All-sky Murchison Widefield Array survey images for 200-MHz continuum radio emission at the position of all pulsars in the Australia Telescope National Facility (ATNF) pulsar catalogue. For the 60 confirmed detections, we have measured flux densities in 20 × 8 MHz bands between 72 and 231 MHz. We compare our results to existing measurements and show that the Murchison Widefield Array flux densities are in good agreement

    Time-domain and spectral properties of pulsars at 154 MHz

    Get PDF
    We present 154 MHz Murchison Widefield Array imaging observations and variability information for a sample of pulsars. Over the declination range −80° < δ < 10°, we detect 17 known pulsars with mean flux density greater than 0.3 Jy. We explore the variability properties of this sample on time-scales of minutes to years. For three of these pulsars, PSR J0953+0755, PSR J0437−4715, and PSR J0630−2834, we observe interstellar scintillation and variability on time-scales of greater than 2 min. One further pulsar, PSR J0034−0721, showed significant variability, the physical origins of which are difficult to determine. The dynamic spectra for PSR J0953+0755 and PSR J0437−4715 show discrete time and frequency structure consistent with diffractive interstellar scintillation and we present the scintillation bandwidth and time-scales from these observations. The remaining pulsars within our sample were statistically non-variable. We also explore the spectral properties of this sample and find spectral curvature in pulsars PSR J0835−4510, PSR J1752−2806, and PSR J0437−4715

    A high reliability survey of discrete Epoch of Reionization foreground sources in the MWA EoR0 field

    Get PDF
    Detection of the epoch of reionization HI signal requires a precise understanding of the intervening galaxies and AGN, both for instrumental calibration and foreground removal. We present a catalogue of 7394 extragalactic sources at 182 MHz detected in the RA = 0 field of the Murchison Widefield Array Epoch of Reionization observation programme. Motivated by unprecedented requirements for precision and reliability we develop new methods for source finding and selection. We apply machine learning methods to self-consistently classify the relative reliability of 9490 source candidates. A subset of 7466 are selected based on reliability class and signal-to-noise ratio criteria. These are statistically cross-matched to four other radio surveys using both position and flux density information. We find 7369 sources to have confident matches, including 90 partially resolved sources that split into a total of 192 sub-components. An additional 25 unmatched sources are included as new radio detections. The catalogue sources have a median spectral index of -0.85. Spectral flattening is seen towards lower frequencies with a median of -0.71 predicted at 182 MHz. The astrometric error is 7 arcsec compared to a 2.3 arcmin beam FWHM. The resulting catalogue covers ~1400 deg2 and is complete to approximately 80 mJy within half beam power. This provides the most reliable discrete source sky model available to date in the MWA EoR0 field for precision foreground subtraction

    Extragalactic Peaked-Spectrum Radio Sources at Low Frequencies

    Get PDF
    This document is the Accepted Manuscript of the following article: J.R. Callingham, et al, 'Extragalactic Peaked-Spectrum Radio Sources at Low Frequencies', The Astrophysical Journal, 836 (2), (28pp), first published online 17 February 2017. DOI: https://doi.org/10.3847/1538-4357-836/2/174. © 2017, The American Astronomical Society. All rights reserved. Data tables, and the appendix containing all of the SEDs, are available from the journal and on request to the authorWe present a sample of 1,483 sources that display spectral peaks between 72 MHz and 1.4 GHz, selected from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. The GLEAM survey is the widest fractional bandwidth all-sky survey to date, ideal for identifying peaked-spectrum sources at low radio frequencies. Our peaked-spectrum sources are the low frequency analogues of gigahertz-peaked spectrum (GPS) and compact-steep spectrum (CSS) sources, which have been hypothesized to be the precursors to massive radio galaxies. Our sample more than doubles the number of known peaked-spectrum candidates, and 95% of our sample have a newly characterized spectral peak. We highlight that some GPS sources peaking above 5 GHz have had multiple epochs of nuclear activity, and demonstrate the possibility of identifying high redshift (z>2z > 2) galaxies via steep optically thin spectral indices and low observed peak frequencies. The distribution of the optically thick spectral indices of our sample is consistent with past GPS/CSS samples but with a large dispersion, suggesting that the spectral peak is a product of an inhomogeneous environment that is individualistic. We find no dependence of observed peak frequency with redshift, consistent with the peaked-spectrum sample comprising both local CSS sources and high-redshift GPS sources. The 5 GHz luminosity distribution lacks the brightest GPS and CSS sources of previous samples, implying that a convolution of source evolution and redshift influences the type of peaked-spectrum sources identified below 1 GHz. Finally, we discuss sources with optically thick spectral indices that exceed the synchrotron self-absorption limit.Peer reviewedFinal Accepted Versio

    The murchison widefield array 21 cm power spectrum analysis methodology

    Get PDF
    We present the 21 cm power spectrum analysis approach of the Murchison Widefield Array Epoch of Reionization project. In this paper, we compare the outputs of multiple pipelines for the purpose of validating statistical limits cosmological hydrogen at redshifts between 6 and 12. Multiple independent data calibration and reduction pipelines are used to make power spectrum limits on a fiducial night of data. Comparing the outputs of imaging and power spectrum stages highlights differences in calibration, foreground subtraction, and power spectrum calculation. The power spectra found using these different methods span a space defined by the various tradeoffs between speed, accuracy, and systematic control. Lessons learned from comparing the pipelines range from the algorithmic to the prosaically mundane; all demonstrate the many pitfalls of neglecting reproducibility. We briefly discuss the way these different methods attempt to handle the question of evaluating a significant detection in the presence of foregrounds
    corecore