87 research outputs found
Action of Ganoderma lucidum mycelial growth filtrates on Erysiphe dffusa and embryotoxicity assessment in a chicken embryo model
This work aimed to evaluate the antimicrobial effect of Ganoderma lucidum mycelial growth filtrates (MGF) on the phytopathogen Erysiphe diffusa and their potential effects on the embryonic development of Gallus gallus. The antimicrobial activity was evaluated on E. diffusa spores by the microdilution broth method. To evaluate embryotoxic and teratogenic effects, fertile eggs of G. gallus received injections of solutions containing the filtrates of G. lucidum through the air chamber. After three days of incubation, we opened the eggs and evaluated egg viability, embryo survival, malformation occurrence, embryonic staging and heart rate. Live embryos were prepared using whole mount technique and the morphological analysis was performed. We used the generalized linear model to fit embryotoxicity and teratogenicity data. We verified that G. lucidum MGF showed inhibitory activity in vitro against E. diffusa and the minimum inhibitory concentrations ranged from 5 to 10 mg/mL. We could also observe that the filtrates did not present embryotoxic or teratogenic effects on the early embryonic development of G. gallus, but induced significant differences in the embryonic mean heart rate and on the stage of embryonic development
Evaluation of a novel mitochondrial Pan-Mucorales marker for the detection, identification, quantification, and growth stage determination of mucormycetes
Mucormycosis infections are infrequent yet aggressive and serious fungal infections. Early diagnosis of mucormycosis and its discrimination from other fungal infections is required for targeted treatment and more favorable patient outcomes. The majority of the molecular assays use 18 S rDNA. In the current study, we aimed to explore the potential of the mitochondrial rnl (encoding for large-subunit-ribosomal-RNA) gene as a novel molecular marker suitable for research and diagnostics. Rnl was evaluated as a marker for: (1) the Mucorales family, (2) species identification (Rhizopus arrhizus, R. microsporus, Mucor circinelloides, and Lichtheimia species complexes), (3) growth stage, and (4) quantification. Sensitivity, specificity, discriminatory power, the limit of detection (LoD), and cross-reactivity were evaluated. Assays were tested using pure cultures, spiked clinical samples, murine organs, and human paraffin-embedded-tissue (FFPE) samples. Mitochondrial markers were found to be superior to nuclear markers for degraded samples. Rnl outperformed the UMD universal® (Molyzm) marker in FFPE (71.5% positive samples versus 50%). Spiked blood samples highlighted the potential of rnl as a pan-Mucorales screening test. Fungal burden was reproducibly quantified in murine organs using standard curves. Identification of pure cultures gave a perfect (100%) correlation with the detected internal transcribed spacer (ITS) sequence. In conclusion, mitochondrial genes, such as rnl, provide an alternative to the nuclear 18 S rDNA genes and deserve further evaluation.CD laboratory: This research was funded by the Christian Doppler Laboratory for fungal infections
A benzene-degrading nitrate-reducing microbial consortium displays aerobic and anaerobic benzene degradation pathways
All sequence data from this study were deposited at the European Bioinformatics Institute under the accession numbers ERS1670018 to ERS1670023. Further, all assigned genes, taxonomy, function, sequences of contigs, genes and proteins can be found in Table S3.In this study, we report transcription of genes involved in aerobic and anaerobic benzene degradation pathways in a benzene-degrading denitrifying continuous culture. Transcripts associated with the family Peptococcaceae dominated all samples (2136% relative abundance) indicating their key role in the community. We found a highly transcribed gene cluster encoding a presumed anaerobic benzene carboxylase (AbcA and AbcD) and a benzoate-coenzyme A ligase (BzlA). Predicted gene products showed >96% amino acid identity and similar gene order to the corresponding benzene degradation gene cluster described previously, providing further evidence for anaerobic benzene activation via carboxylation. For subsequent benzoyl-CoA dearomatization, bam-like genes analogous to the ones found in other strict anaerobes were transcribed, whereas gene transcripts involved in downstream benzoyl-CoA degradation were mostly analogous to the ones described in facultative anaerobes. The concurrent transcription of genes encoding enzymes involved in oxygenase-mediated aerobic benzene degradation suggested oxygen presence in the culture, possibly formed via a recently identified nitric oxide dismutase (Nod). Although we were unable to detect transcription of Nod-encoding genes, addition of nitrite and formate to the continuous culture showed indication for oxygen production. Such an oxygen production would enable aerobic microbes to thrive in oxygen-depleted and nitrate-containing subsurface environments contaminated with hydrocarbons.This study was supported by a grant of BE-Basic-FES funds from the Dutch Ministry of Economic Affairs. The research of A.J.M. Stams is supported by an ERC grant (project 323009) and the gravitation grant “Microbes for Health and Environment” (project 024.002.002) of the Netherlands Ministry of Education, Culture and Science. F. Hugenholtz was supported by the same gravitation grant (project 024.002.002). B. Hornung is supported by Wageningen University and the Wageningen Institute for Environment and Climate Research (WIMEK) through the IP/OP program Systems Biology (project KB-17-003.02-023).info:eu-repo/semantics/publishedVersio
Fine-scale degrader community profiling over an aerobic/anaerobic redox gradient in a toluene-contaminated aquifer.
Hydrocarbon contaminants in groundwater can be degraded by microbes under different redox settings, forming hot spots of degradation especially at the fringes of contaminant plumes. At a tar-oil-contaminated aquifer in Germany, it was previously shown that the distribution of anaerobic toluene degraders as traced via catabolic and ribosomal marker genes is highly correlated to zones of increased anaerobic degradation at the lower fringe of the plume. Here, we trace the respective distribution of aerobic toluene degraders over a fine-scale depth transect of sediments taken at the upper fringe of the plume and below, based on the analysis of 16S rRNA genes as well as catabolic markers in intervals of 310cm. Well-defined small-scale distribution maxima of typical aerobic degrader lineages within the Pseudomonadaceae, Comamonadaceae and Burkholderiaceae are revealed over the redox gradient. An unexpected maximal abundance of 9.2x106 toluene monooxygenase (tmoA) genes per g of sediment was detected in the strongly reduced plume core, and gene counts did not increase towards the more oxidized upper plume fringe. This may point towards unusual ecological controls of these yet unidentified aerobic degraders, and indicates that competitive niche partitioning between aerobic and anaerobic hydrocarbon degraders in the field is not yet fully understood. These findings demonstrate the potential of catabolic marker gene assays in elaborating the ecology of contaminant plumes, which is a prerequisite for developing integrated monitoring strategies for natural attenuation
- …