36 research outputs found

    Scaling the nexus: Towards integrated frameworks for analyzing water, energy and food

    Get PDF
    The emergence of the water-energy-food (WEF) nexus has resulted in changes to the way we perceive our natural resources. Stressors such as climate change and population growth have highlighted the fragility of our WEF systems, necessitating integrated solutions across multiple scales. Whilst a number of frameworks and analytical tools have been developed since 2011, a comprehensive WEF nexus tool remains elusive, hindered in part by our limited data and understanding of the interdependencies and connections across the WEF systems. To achieve this, the community of academics, practitioners and policy-makers invested in WEF nexus research are addressing several critical areas that currently remain as barriers. Firstly, the plurality of scales (e.g., spatial, temporal, institutional, jurisdictional) necessitates a more comprehensive effort to assess interdependencies between water, energy and food, from household to institutional and national levels. Secondly, and closely related to scale, a lack of available data often hinders our ability to quantify physical stocks and flows of resources. Overcoming these barriers necessitates engaging multiple stakeholders, and using experiences and local insights to better understand nexus dynamics in particular locations or scenarios, and we exemplify this with the inclusion of a UK-based case-study on exploring the nexus in a particular geographical area. We elucidate many challenges that have arisen across nexus research, including the impact of multiple scales in operation, and concomitantly, what impact these scales have on data accessibility. We assess some of the critical frameworks and tools that are applied by nexus researchers and articulate some of the steps required to develop from nexus thinking to an operationalizable concept, with a consistent focus on scale and data availability

    Ocean sprawl facilitates dispersal and connectivity of protected species

    Get PDF
    Highly connected networks generally improve resilience in complex systems. We present a novel application of this paradigm and investigated the potential for anthropogenic structures in the ocean to enhance connectivity of a protected species threatened by human pressures and climate change. Biophysical dispersal models of a protected coral species simulated potential connectivity between oil and gas installations across the North Sea but also metapopulation outcomes for naturally occurring corals downstream. Network analyses illustrated how just a single generation of virtual larvae released from these installations could create a highly connected anthropogenic system, with larvae becoming competent to settle over a range of natural deep-sea, shelf and fjord coral ecosystems including a marine protected area. These results provide the first study showing that a system of anthropogenic structures can have international conservation significance by creating ecologically connected networks and by acting as stepping stones for cross-border interconnection to natural populations

    Footprint of Deepwater Horizon blowout impact to deep-water coral communities

    No full text
    On April 20, 2010, the Deepwater Horizon (DWH) blowout occurred, releasing more oil than any accidental spill in history. Oil release continued for 87 d and much of the oil and gas remained in, or returned to, the deep sea. A coral community significantly impacted by the spill was discovered in late 2010 at 1,370 m depth. Here we describe the discovery of five previously unknown coral communities near the Macondo wellhead and show that at least two additional coral communities were impacted by the spill. Although the oil-containing flocullent material that was present on corals when the first impacted community was discovered was largely gone, a characteristic patchy covering of hydrozoans on dead portions of the skeleton allowed recognition of impacted colonies at the more recently discovered sites. One of these communities was 6 km south of the Macondo wellhead and over 90% of the corals present showed the characteristic signs of recent impact. The other community, 22 km southeast of the wellhead between 1,850 and 1,950 m depth, was more lightly impacted. However, the discovery of this site considerably extends the distance from Macondo and depth range of significant impact to benthic macrofaunal communities. We also show that most known deep-water coral communities in the Gulf of Mexico do not appear to have been acutely impacted by the spill, although two of the newly discovered communities near the wellhead apparently not impacted by the spill have been impacted by deep-sea fishing operations

    Rapid Emotion Regulation After Mood Induction: Age and Individual Differences

    No full text
    Previous research has suggested that emotion regulation improves with age. This study examined both age and individual differences in online emotion regulation after a negative mood induction. We found evidence that older adults were more likely to rapidly regulate their emotions than were younger adults. Moreover, older adults who rapidly regulated had lower trait anxiety and depressive symptoms and higher levels of optimism than their same-age peers who did not rapidly regulate. Measuring mood change over an extended time revealed that older rapid regulators still reported increased levels of positive affect over 20 min later, whereas young adult rapid regulators' moods had declined. These results highlight the importance of considering individual differences when examining age differences in online emotion regulation. Copyright 2009, Oxford University Press.
    corecore