188 research outputs found

    Graph Interpolation Grammars: a Rule-based Approach to the Incremental Parsing of Natural Languages

    Get PDF
    Graph Interpolation Grammars are a declarative formalism with an operational semantics. Their goal is to emulate salient features of the human parser, and notably incrementality. The parsing process defined by GIGs incrementally builds a syntactic representation of a sentence as each successive lexeme is read. A GIG rule specifies a set of parse configurations that trigger its application and an operation to perform on a matching configuration. Rules are partly context-sensitive; furthermore, they are reversible, meaning that their operations can be undone, which allows the parsing process to be nondeterministic. These two factors confer enough expressive power to the formalism for parsing natural languages.Comment: 41 pages, Postscript onl

    Graph Interpolation Grammars as Context-Free Automata

    Get PDF
    A derivation step in a Graph Interpolation Grammar has the effect of scanning an input token. This feature, which aims at emulating the incrementality of the natural parser, restricts the formal power of GIGs. This contrasts with the fact that the derivation mechanism involves a context-sensitive device similar to tree adjunction in TAGs. The combined effect of input-driven derivation and restricted context-sensitiveness would be conceivably unfortunate if it turned out that Graph Interpolation Languages did not subsume Context Free Languages while being partially context-sensitive. This report sets about examining relations between CFGs and GIGs, and shows that GILs are a proper superclass of CFLs. It also brings out a strong equivalence between CFGs and GIGs for the class of CFLs. Thus, it lays the basis for meaningfully investigating the amount of context-sensitiveness supported by GIGs, but leaves this investigation for further research

    Generalized Stable Multivariate Distribution and Anisotropic Dilations

    Full text link
    After having closely re-examined the notion of a L\'evy's stable vector, it is shown that the notion of a stable multivariate distribution is more general than previously defined. Indeed, a more intrinsic vector definition is obtained with the help of non isotropic dilations and a related notion of generalized scale. In this framework, the components of a stable vector may not only have distinct Levy's stability indices α\alpha's, but the latter may depend on its norm. Indeed, we demonstrate that the Levy's stability index of a vector rather correspond to a linear application than to a scalar, and we show that the former should satisfy a simple spectral property

    Fast and Accurate Time-Domain Simulations of Integer-N PLLs

    Full text link

    Anomalous Scaling of Structure Functions and Dynamic Constraints on Turbulence Simulations

    Get PDF
    The connection between anomalous scaling of structure functions (intermittency) and numerical methods for turbulence simulations is discussed. It is argued that the computational work for direct numerical simulations (DNS) of fully developed turbulence increases as Re4Re^{4}, and not as Re3Re^{3} expected from Kolmogorov's theory, where ReRe is a large-scale Reynolds number. Various relations for the moments of acceleration and velocity derivatives are derived. An infinite set of exact constraints on dynamically consistent subgrid models for Large Eddy Simulations (LES) is derived from the Navier-Stokes equations, and some problems of principle associated with existing LES models are highlighted.Comment: 18 page
    • …
    corecore