50 research outputs found

    Nanoscale assembly processes revealed in the nacroprismatic transition zone of Pinna nobilis mollusc shells

    Full text link
    Intricate biomineralization processes in molluscs engineer hierarchical structures with meso-, nano-, and atomic architectures that give the final composite material exceptional mechanical strength and optical iridescence on the macroscale. This multiscale biological assembly inspires new synthetic routes to complex materials. Our investigation of the prism-nacre interface reveals nanoscale details governing the onset of nacre formation using high-resolution scanning transmission electron microscopy. A wedge polishing technique provides unprecedented, large-area specimens required to span the entire interface. Within this region, we find a transition from nanofibrillar aggregation to irregular early-nacre layers, to well-ordered mature nacre suggesting the assembly process is driven by aggregation of nanoparticles (~50-80 nm) within an organic matrix that arrange in fiber-like polycrystalline configurations. The particle number increases successively and, when critical packing is reached, they merge into early-nacre platelets. These results give new insights into nacre formation and particle-accretion mechanisms that may be common to many calcareous biominerals.Comment: 5 Figure

    Tuning hardness in calcite by incorporation of amino acids

    Get PDF
    Structural biominerals are inorganic/organic composites that exhibit remarkable mechanical properties. However, the structure–property relationships of even the simplest building unit—mineral single crystals containing embedded macromolecules—remain poorly understood. Here, by means of a model biomineral made from calcite single crystals containing glycine (0–7 mol%) or aspartic acid (0–4 mol%), we elucidate the origin of the superior hardness of biogenic calcite. We analysed lattice distortions in these model crystals by using X-ray diffraction and molecular dynamics simulations, and by means of solid-state nuclear magnetic resonance show that the amino acids are incorporated as individual molecules. We also demonstrate that nanoindentation hardness increased with amino acid content, reaching values equivalent to their biogenic counterparts. A dislocation pinning model reveals that the enhanced hardness is determined by the force required to cut covalent bonds in the molecules

    Introduction: Biomineralization

    No full text

    Mosaic anisotropy model for magnetic interactions in mesostructured crystals

    No full text
    We propose a new model for interpreting the magnetic interactions in crystals with mosaic texture called the mosaic anisotropy (MA) model. We test the MA model using hematite as a model system, comparing mosaic crystals to polycrystals, single crystal nanoparticles, and bulk single crystals. Vibrating sample magnetometry confirms the hypothesis of the MA model that mosaic crystals have larger remanence (Mr/Ms) and coercivity (Hc) compared to polycrystalline or bulk single crystals. By exploring the magnetic properties of mesostructured crystalline materials, we may be able to develop new routes to engineering harder magnets

    Sass, Stephen Louis

    Full text link
    Also available as a printed booklet and from the Dean of Faculty website https://theuniversityfaculty.cornell.edu/Memorial Statement for Stephen Louis Sass, who died in 2019. The memorial statements contained herein were prepared by the Office of the Dean of the University Faculty of Cornell University to honor its faculty for their service to the university

    Hierarchically Structured Hematite Architectures Achieved by Growth in a Silica Hydrogel

    No full text
    Biomineralization strategies include the use of hydrogels to direct the formation of composite, single-crystal-like structures with unique structure–property profiles. Application of similar synthetic approaches to transition-metal oxides has the promise to yield low-temperature routes to hierarchically structured crystals that are optimized for a range of applications. Here, growth of hematite (α-Fe<sub>2</sub>O<sub>3</sub>) within a silica hydrogel resulted in hierarchical, mosaic crystals preferentially expressing catalytically active {110} facets, which are absent in solution-grown controls. Quantitative structural and compositional analysis reveals architectural changes that begin with the incorporation of silicon into the hematite lattice and propagate through to the nanoscale domain structure and assembly, leading to microscale morphologies that show improved photocatalytic performance. This work demonstrates the potential of applying bioinspired crystallization techniques to design functional oxides with multiscale architectural features
    corecore