60 research outputs found

    Evolution of clusters and large-scale structures of galaxies

    Get PDF

    Measuring the slopes of mass profiles for dwarf spheroidals in triaxial CDM potentials

    Full text link
    We generate stellar distribution functions (DFs) in triaxial haloes in order to examine the reliability of slopes ΓΔlogM/Δlogr\Gamma\equiv \Delta {\rm log} M / \Delta {\rm log} r inferred by applying mass estimators of the form MReσ2M\propto R_e\sigma^2 (i.e. assuming spherical symmetry, where ReR_e and σ\sigma are luminous effective radius and global velocity dispersion, respectively) to two stellar sub-populations independently tracing the same gravitational potential. The DFs take the form f(E)f(E), are dynamically stable, and are generated within triaxial potentials corresponding directly to subhaloes formed in cosmological dark-matter-only simulations of Milky Way and galaxy cluster haloes. Additionally, we consider the effect of different tracer number density profiles (cuspy and cored) on the inferred slopes of mass profiles. For the isotropic DFs considered here, we find that halo triaxiality tends to introduce an anti-correlation between ReR_e and σ\sigma when estimated for a variety of viewing angles. The net effect is a negligible contribution to the systematic error associated with the slope of the mass profile, which continues to be dominated by a bias toward greater overestimation of masses for more-concentrated tracer populations. We demonstrate that simple mass estimates for two distinct tracer populations can give reliable (and cosmologically meaningful) lower limits for Γ\Gamma, irrespective of the degree of triaxiality or shape of the tracer number density profile.Comment: 5 pages, 4 figures, submitted to MNRA

    Evolution of clusters and large-scale structures of galaxies

    Get PDF

    The Growth in Size and Mass of Cluster Galaxies since z=2

    Full text link
    We study the formation and evolution of Brightest Cluster Galaxies starting from a z=2z=2 population of quiescent ellipticals and following them to z=0z=0. To this end, we use a suite of nine high-resolution dark matter-only simulations of galaxy clusters in a Λ\LambdaCDM universe. We develop a scheme in which simulation particles are weighted to generate realistic and dynamically stable stellar density profiles at z=2z=2. Our initial conditions assign a stellar mass to every identified dark halo as expected from abundance matching; assuming there exists a one-to-one relation between the visible properties of galaxies and their host haloes. We set the sizes of the luminous components according to the observed relations for z2z\sim2 massive quiescent galaxies. We study the evolution of the mass-size relation, the fate of satellite galaxies and the mass aggregation of the cluster central. From z=2z=2, these galaxies grow on average in size by a factor 5 to 10 of and in mass by 2 to 3. The stellar mass growth rate of the simulated BCGs in our sample is of 1.9 in the range 0.3<z<1.00.3<z<1.0 consistent with observations, and of 1.5 in the range 0.0<z<0.30.0<z<0.3. Furthermore the satellite galaxies evolve to the present day mass-size relation by z=0z=0. Assuming passively evolving stellar populations, we present surface brightness profiles for our cluster centrals which resemble those observed for the cDs in similar mass clusters both at z=0z=0 and at z=1z=1. This demonstrates that the Λ\LambdaCDM cosmology does indeed predict minor and major mergers to occur in galaxy clusters with the frequency and mass ratio distribution required to explain the observed growth in size of passive galaxies since z=2z=2. Our experiment shows that Brightest Cluster Galaxies can form through dissipationless mergers of quiescent massive z=2z=2 galaxies, without substantial additional star formation.Comment: submitted to MNRAS, 10 pages, 8 figures, 2 table

    Weighing the Galactic disk using phase-space spirals III. Probing distant regions of the disk using the Gaia EDR3 proper motion sample

    Full text link
    We have applied our method for weighing the Galactic disk using phase-space spirals to the Gaia EDR3 proper motion sample. For stars in distant regions of the Galactic disk, the latitudinal proper motion has a close projection with vertical velocity, such that the phase-space spiral in the plane of vertical position and vertical velocity can be observed without requiring that all stars have available radial velocity information. We divided the Galactic plane into 360 separate data samples, each corresponding to an area cell in the Galactic plane in the distance range of 1.4-3.4 kpc, with an approximate cell length of 200-400 pc. Roughly half of our data samples were disqualified altogether due to severe selection effects, especially in the direction of the Galactic centre. In the remainder, we were able to infer the vertical gravitational potential by fitting an analytic model of the phase-space spiral to the data. This work is the first of its kind, in the sense that we are weighing distant regions of the Galactic disk with a high spatial resolution, without relying on the strong assumptions of axisymmetry. Post-inference, we fit a thin disk scale length of 2.2±0.12.2\pm 0.1 kpc, although this value is sensitive to the considered spatial region. We see surface density variations as a function of azimuth on the order of 10-20 %, which is roughly the size of our estimated sum of potential systematic biases. With this work, we have demonstrated that our method can be used to weigh distant regions of the Galactic disk despite strong selection effects. We expect to reach even greater distances and improve our accuracy with future Gaia data releases and further improvements to our method.Comment: 18 pages, 19 figures, accepted for publication in A&
    corecore