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Zusammenfassung

Diese Doktorarbeit befasst sich mit der Bildung und Entwicklung der Hellsten Haufen-
galaxien (Brightest Cluster Galaxies, BCGs) und mit der zentralen Verteilung von Dunkler
Materie (DM) in Galaxienhaufen in kosmologischen N-Körper Simulationen im Rahmen
des ΛCDM Paradigmas. Dabei werden folgende Fragen behandelt: Wachsen BCGs durch
dissipationsfreie Merger innerhalb der letzten 10 Gigajahre? Wenn ja, was sind ihre struk-
turellen Eigenschaften? Sind die vorhergesagten Massenwachstumsraten der BCGs in den
letzten 10 Gigajahren in Übereinstimmung mit Beobachtungen? Welche Bedeutung hat die
dissipationsfreie Bildung von BCGs für die zentrale Verteilung der DM in Galaxienhaufen?
Legen die Beobachtungsdaten der Verteilung der DM in Galaxienhaufen tatsächlich nahe,
dass die Vorstellung der DM als kalt und kollisionsfrei überdacht werden muss?

Die ersten drei Kapitel dieser Arbeit geben einen Überblick über Kosmologie, Struktur-
bildung, die Natur der Dunklen Materie und über numerische Techniken in kosmologischen
N-Körper Simulationen.

In Kapitel 4 wird anhand eines Sets von kosmologischen N-Körper Simulationen und
mehreren reskalierten Versionen dieser Simulationen untersucht, wie sich zentral schwach
konzentrierte Verteilungen von Dunkler Materie (shallow DM cusps) durch dissipations-
freie Verschmelzungen von Galaxien (Merger) bilden können. Es wird die Abhängigkeit
der Mischung von DM und Sternen im Zentrum der Haufen zu späteren Zeiten von der
ursprünglichen stellaren Struktur untersucht. Es stellt sich heraus, dass qualitativ flache
DM cusps im Zentrum von Galaxienhaufen natürlicherweise zu erwarten sind, falls die
Bildung der BCGs in erster Linie durch dissipationsfreie Merger abläuft.

In Kapitel 5 wird ein allgemeines Gewichtungsschema entwickelt, um Gleichgewichtsverteilungs-
funktionen der Form f(E) in triaxialen Potentialen zu generieren. Dieses Schema wird
auf eine Reihe von neun hochaufgelösten DM Simulationen zur Halobildung von Haufen-
galaxien angewendet, um die Zusammensetzung von BCGs und von elliptischen Haufen zu
verfolgen. Dafür werden die neuesten, durch Beobachtungen gewonnenen Beschränkungen
für galaktische Strukturen sowie für die Relationen zwischen Sternen und DM verwendet.
Es wird gezeigt, dass dissipationsfreie Merger in ΛCDM in Übereinstimmung mit Beobach-
tungen stellare Massenzusammensetzungen von BCGs mit Wachstumsraten von ∼ 2.1 im
Bereich 0.3 < z < 1.0 und von ∼ 1.4 im Bereich 0.0 < z < 0.3 vorhersagen. Desweiteren
sind die produzierten stellaren Oberflächenhelligkeitsprofile konsistent mit realen BCGs
ähnlicher Massen bei Rotverschiebung z = 0 und z = 1. Außerdem wird gezeigt, dass
die ΛCDM Kosmologie tatsächlich kleinere und größere Merger in Haufengalaxien vorher-
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sagt, und zwar mit der Häufigkeit und Massenverteilungsrate, die benötigt wird, um die
beobachteten Wachstumsraten von passiven Galaxien seit z = 2 zu erklären.

In Kapitel 6 wird die Frage nach der Verteilung der DM im Zentrum von Haufen-
galaxien wieder aufgegriffen. Es wird eine Methode entwickelt, um selbst-gravitative Gle-
ichgewichtverteilungsfunktionen in die in den kosmologischen Simulationen gebildeten DM
Halos einzufügen.Es stellt sich heraus, dass das Gesamtdichteprofil unter Hinzunahme von
Baryonen bei z = 2 durch die hohe Zahl an Mergern im Zentrum von Haufengalaxien
wieder nahe an dem der ursprünglichen reinen DM Simulationen liegt (mit Ausnahme
der innersten Bereiche, ∼ 5 kpc). Diese Ergebnisse legen die Existenz einer Attraktor-
Lösung für kollisionsfreie Systeme nahe, ungeachtet der Hinzunahme von Baryonen, bei
denen Mischvorgänge effektiv sind. Die Dichteprofile von DM in den Resimulationen sind
flacher als die in den reinen DM Simulationen mit einem Unterschied von ∆γ ≡ ∆(dlnρ

dlnr
) ∼

0.3 − 0.4. Die Skala, auf der dieser Übergang geschieht, ähnelt der von Beobachtungen
um r/r200 ∼ 0.01 − 0.02 suggerierten Skala. Es wird außerdem vermutet, dass der Ef-
fekt der Erhitzung durch dynamische Reibung von einfallenden Schwarzen Löchern die
weitere zentrale Massenverteilung innerhalb von r ∼ 5 kpc beeinflussen kann. Die berech-
neten Massendefizite könnten eine natürliche Erklärung für einige der größten zentralen
Sternkonzentrationen innerhalb von rc ∼ 3 kpc darstellen, die in BCGs beobachtet werden.

Der letzte Teil dieser Arbeit konzentriert sich auf die systematischen Effekte, die durch
die Triaxialität in der sphärischen Modellierung der dSphs mit Hilfe von N-Körper Galax-
iemodellen innerhalb von DM Halos aus dem finalen Zustand von kosmologischen Sim-
ulationen in ΛCDM entstehen. Nach aktuellem Forschungsstand sind die Dichteprofile
der DM von zwei der hellsten dSphs (Sculptor und Fornax) zentral abgeflacht (DM cores),
was möglicherweise eine Herausforderung für die Physik der Galaxienbildung darstellt oder
sogar die Natur der DM Teilchen in Frage stellt (nämlich dass diese kollisionsfrei und bei
Entkopplung nichtrelativistisch sind). In diesem Kapitel wird geprüft, ob die komplexe
Struktur von CDM DM Halos Beobachter dazu verleiten kann, von DM cores auszugehen,
wenn eigentlich DM cusps vorliegen. Es stellt sich heraus, dass dies nicht der Fall ist.
Es bleibt abzuwarten, ob die gefolgerte Verteilung von DM in Zwerggalaxien tatsächlich
zentral abgeflacht ist, oder ob eine allgemeine Klasse von Verteilungsfunktionen existiert,
die mit den Beobachtungsdaten für zentral abgeflachte DM Halos übereinstimmt. In je-
dem Fall scheint dieses Resultat Thesen von Seiten der beobachtenden Astrophysik zu
unterstützen.



Summary

This thesis is concerned with the formation and evolution of the Brightest Cluster Galax-
ies (BCGs) and the central distribution of matter in galaxy clusters within the ΛCDM
paradigm through cosmological N-body simulations. It addresses the following questions:
Do BCGs grow from dissipationless mergers in the last 10 Gyrs? If so, what would their
structural properties look like? Do the predicted mass growth rates of BCGs in ΛCDM
agree with those observed? What is the impact of this purely dissipationless formation
channel for BCGs on the central distribution of dark matter in galaxy clusters? Do ob-
servations of the matter distribution in galaxy clusters really suggest/imply that the idea
that dark matter is cold and collisionless needs to be reconsidered? The first three chap-
ters serve as a review of cosmology, structure formation, the nature of dark matter and
numerical techniques used in cosmological N-body simulations. In Chapter 4, we study
the formation of shallow dark matter cusps through dissipationless mergers using a set of
cosmological N-body simulations and several rescaled versions. We study the dependence
of initial stellar structure on the internal mixing between dark matter and stars at the
centre of clusters at late times. We find that qualitatively shallow dark matter cusps at
the centre of galaxy clusters are naturally expected if the formation of BCGs is primarily
driven by dissipationless mergers. In Chapter 5, we develop a general weighting scheme to
generate equilibrium tracer distribution functions of the form f(E) in triaxial potentials.
We apply this scheme to a suite of nine high-resolution dark matter only simulations of
galaxy clusters halo formation to follow the assembly of BCGs and cluster ellipticals us-
ing the latest observational constraints on galactic structure combined with stellar-to-dark
matter relations. We show that the dissipationless merger channel in ΛCDM is consistent
with predicting the stellar mass assembly of BCGs with growth rates of ∼ 2.1 in the range
0.3 < z < 1.0 and by a factor of ∼ 1.4 in the range 0.0 < z < 0.3 , consistent with
observations. Furthermore, the stellar surface brightness profiles produced are consistent
with real BCGs for similar mass clusters at z = 0 and z = 1. We also demonstrate that
the ΛCDM cosmology does indeed predict minor and major mergers to occur in galaxy
clusters with the frequency and mass ratio distribution required to explain the observed
growth in size of passive galaxies since z = 2. In Chapter 6 we return to the question
of the distribution of matter at the centre of galaxy clusters. We develop a method to
directly insert self-gravitating equilibrium distribution functions inside dark matter haloes
formed in cosmological simulations. It is found that after baryonic loading at z = 2,
the high number of mergers occurring at the centre of the galaxy clusters take the total
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density profile back to a solution closely resembling that of the original dark matter only
runs (except in the inner-most regions below 6 − 4 kpc). This suggests the existence of
an attractor solution for collisionless systems, irrespective of the baryonic loading where
mixing is effective. The dark matter density profiles in these re-simulaitons as a result are
shallower than those in the dark matter only runs with a difference of ∆γ ∼ 0.3−0.4. The
scale at which the transition occurs is exactly similar with that inferred by observations
around r/r200 ∼ 0.01 − 0.02. We further estimate that the effect of dynamical friction
heating impeded by infalling black holes can affect further the central mass distribution
below r ∼ 4− 6 kpc. Our calculated mass-deficits would provide a natural explanation for
some of the largest stellar cores of rc ∼ 3 kpc observed in BCGs. The final part of the thesis
focusses on the systematics introduced by triaxality in the spherical modelling of dSphs
using N-body galaxy models within dark matter haloes from the end state of cosmological
N-body simulations in ΛCDM. The current claim is that the dark matter density profiles
for two of the most luminous dSphs (Sculptor and Fornax) are cored and this may be a
challenge for galaxy formation physics or maybe even put into question the very nature of
the dark matter particle (the facts that it is a non-relativistic particle at decoupling and
that it is collisionless). This chapter tests whether the complicated structure of CDM dark
matter haloes can fool observers in their inference for cores in the actual presence of cusps.
It is found that this is not the case. It remains to be seen whether the inferred distribution
of dark matter in dwarfs is indeed cored, or whether there exists a general family of distri-
bution functions which are consistent with the observational data for dark matter haloes
which are cored. In any case, this result seems to further credit observational claims.



Part I

Overview
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Chapter 1

Background Cosmology & Structure
Formation

While it is difficult to give a rigorous overview of all subfields of astrophysics that make the
basis of this thesis - this should be the topic of a textbook - I shall discuss a few selected
salient aspects of physics which form the backbone to understanding structure formation in
its full cosmological context. I shall focus more specifically on our currently most favoured
cosmological model, the ΛCDM paradigm which is at the heart of the work presented in
this thesis. In passing, I will point out the relevant references which go in further details
on each subject.

1.1 Background Friedman Robertson-Walker Cosmol-

ogy

The description of the standard cosmological model is based on two fundamental observa-
tions about the Universe. Firstly, on large scale the Universe is homogeneous and isotropic.
That is to say, there is no preferred observing position and the Universe looks the same
in every direction. This is the Copernican principle. Second, space expands such that the
physical distance between any two fundamental observers (i.e. one at rest with respect to
the matter field around it) must have the form:

r = xa(t), (1.1)

where we have introduced the scale factor which connects co-moving coordinate x to the
physical one r. This is known as Hubble’s law of expansion.

Observation of the Cosmic Microwave Background (CMB) confirm homogeneity to the
level of ∆T

T
∼ O(10−5) (Smoot et al., 1992). This is shown in Figure 1.1. Observations of

the large scale structures (LSS) also confirm isotropy when smoothing the density field on
scales of 100 h−1Mpc (Figure 1.2).

From Einstein’s theory of General Relativity, it is possible to derive the equations
governing the evolution of such a Universe. This is done by specifying the metric tensor
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Figure 1.1: Cosmic Microwave Background from the Planck 2013 collaboration. The tem-
perature fluctuations are so small ∆T

T
∼ O(10−5), supporting the idea that the Universe is

homogeneous on large scales.

Figure 1.2: The large-scale structures as seen by the 2 degree Field Galaxy Redshift Survey
(2dFGRS) (Peacock et al., 2001). The Universe on scales of ∼ 100 h−1Mpc is isotropic
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gµν for which the line element is:

ds2 = gµνdx
µdxν . (1.2)

The most general metric for an isotropic and homogeneous Universe is given by the
Robertson-Walker metric:

ds2 = c2dt2 − a2(t)

(

dr2

1− kr2
+ r2(dθ2 + sin2φ2)

)

, (1.3)

where (r, θ, φ) are comoving coordinates in spherical coordinates (i.e., r2 = x2 + y2 + z2)
and k is the spatial curvature (which can take values of -1, 0 and 1).

The equations governing the evolution of the Universe can be derived by manipulating
the Einstein field equation:

Rµν −
1

2
gµνR− gµνΛ =

8πG

c4
Tµν , (1.4)

Where Tµν is the energy momentum tensor, R the curvature scalar and Rµν the Ricci
tensor.The Ricci tensor and curvature scalar can be calculated from the metric. For a
perfect fluid (one with no viscous stress), the energy-momentum tensor is entirely specified
by the rest frame density ρ and isotropic rest frame pressure P and so Tµν is diagonal. The
general form in any frame is given by:

T µν = (ρ+ P )UµUν + Pgµν (1.5)

For a uniform ideal fluid in the rest frame this reduces to Tµν = diag(ρ,−giiP ). Solving
for the 00 and ii components one recovers two equations fully specifying the evolution of
the cosmological background.

These are the Raychaudhuri equation

ä

a
= −4πG

3

(

ρ+ 3
P

c2

)

+
Λc2

3
(1.6)

and the Friedmann equation

(

ȧ

a

)2

=
8πG

3
ρ− kc2

a2
+

Λc2

3
. (1.7)

Observations of the CMB and the LSS find that the Universe is flat and composed of
radiation, matter (in the form of baryons and dark matter) and dark energy (represented
by a cosmological constant Λ) causing an accelerated rate of expansion at late times.

The Pressure term can be written in a general form P = wρc2. Substituting this into
the continuity equation we see that the density evolves as:

ρ ∝ a−3(1+w) (1.8)
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Substituting ρ into the Friedmann equation gives the evolution of the scale factor with
time:

a ∝ t2/3(1+w), ∀w 6= −1 (1.9)

We now need to define some quantities.
Hubble parameter: This defines the expansion rate of the Universe H(t) = ȧ

a
. The

expansion rate at the present time is the Hubble constant H(t0) = H0 = 100h km/s/Mpc,
where h is a dimensionless number (h ∼ 0.7).
Redshift: As a consequence of the expansion of the Universe, light signals (which follow

null geodesics ds = 0) get cosmologically redshifted. We define redshift as 1+z ≡ λ0

λe
= a(t0)

a(te)
,

where λ0, λe, a(t0), a(te) are the wavelengths and scale factors of the light as observed by
an observer today and at emission respectively. In cosmology we generally normalise the
scale factor such that at the present time a(t0) = 1. This gives the following relation for
redshift 1+ z = a−1. Redshift can also be translated into time due to its dependence on a.
Density parameter: This defines the energy density of all constituents in the Universe
Ω = 8πG

3H2ρ = ρ
ρcrit

, where ρcrit is the critical density of the Universe and changes with time
due to its dependency on the Hubble parameter.

Thus we can re-write the Friedmann equation as:

Ω(a)−1 − 1 = − 3kc2

8πGρa2
(1.10)

1.1.1 Inflation

When looking at the CMB it is puzzling to see that homogeneity is validated even on
patches where according to the classical Big Bang theory there could not have been any
causal contacts between them. This is generally referred to as the horizon problem. More-
over, when looking at the Friedmann equation (for non-zero matter and radiation content),
the value Ω = 1 is an attractor solution when going back at high redshifts. Given the
that the Universe is very close to flat (with Ω only deviating mildly from unity) requires
great fine-tuning at earlier times. This is called the flatness problem. These problems are
solved altogether by invoking a period of accelerated expansion at early times. This is
called inflation is generally implemented using a scalar field with special dynamical prop-
erties. Because during an accelerated period of expansion, the comoving horizon decreases

( d
dt

(

1
aH

)

< 0) and thus regions which were actually in causal contact can no longer commu-

nicate. One of the most important predictions from inflation is the primordial form of the
matter power-spectrum (an important quantity for the study of the growth of structure)
for which we quote the final result.

P (k) = Akn, (1.11)

where n is the spectral index and A is the normalisation. At the end of inflation, the
Universe goes through a period of re-heating giving rise to the Hot Big Bang which starts
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during the radiation era. For an account on inflation we recommend the reader the following
textbooks (Liddle & Lyth, 2000; Mukhanov, 2005).

1.2 A word on thermal history of the Universe

At early times, during the radiation era, the temperature of the Universe is so high that
it consists of a hot plasma of relativistic particles (νe, νē, e, ē) and photons in thermal
equilibrium (e.g. via Compton scattering). This is guaranteed as long as the interaction
rate, Γ, of the species with the photon fluid is higher than the expansion of the Universe
(i.e. Γ ≫ H ). As the Universe expands the temperature drops, the interaction rate
decreases and species gradually come out of equilibrium and decouple from the photon
fluid. Eventually, matter-domination takes over and at a temperature of T ∼ 3000K, the
photon energies are too low to keep the Universe ionised. This is the time of recombination

when the primordial plasma coalesces to produce neutral hydrogen and the mean free path
of photons has increased to the size of the observable universe, giving rise to CMB that
we can observe today. The physics of this period is generally quite well understood in
terms of the thermodynamics and particle physics involved up to a certain point where
classical theories break down. Accounts on this can be found in Kolb & Turner (1990).
Figure 1.3 shows a timeline summary of the history of the Universe according to the new
Planck Collaboration et al. (2013) cosmology.

1.3 Growth of Structure in the linear regime and the

large-scale structures

On scales smaller than 100 h−1Mpc, the observed Universe is nothing but isotropic and
homogeneous. The galaxies which trace the matter density field are grouped in clusters,
filaments and empty regions known as voids (see Figure 1.2). Growth of structure needs to
be seeded by fluctuations in the matter density field ρ(x, t), leading to a density contrast:

δ(x, t) =
ρ(x, t)− ρ̄(t)

ρ̄(t)
, (1.12)

where ρ(x, t) is the density field at position x and ρ is the background density.
The primordial fluctuations in the density field are thought to originate from quantum

fluctuations (related to Heisenberg’s uncertainty principle) in the very early Universe which
later got stretched during inflation giving rise to a Gaussian random density field with a
characteristic power spectrum (as discussed in the previous section). This random Gaussian
field evolves through the action of gravity and we generally identify two regimes in the
growth of perturbations. The linear regime where δ ≪ 1 (i.e. the amplitude of the
perturbations are small) and the non-linear one where the δ ≫ 1.

A rigorous treatment of growth of structure in the linear regime requires perturbing
the FRW metric, solving the perturbed Einstein equations and study how the various per-
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turbations in the complex fluid (made up of collisionless dark matter, photons, neutrinos,
and collisional baryonic matter) evolve by solving the Boltzmann equation and at different
times (radiation domination and matter domination) and taking account of dissipation
effects such as Silk damping (the damping of small-scale oscillations in the baryons due to
photon diffusion which occurs at decoupling between matter and radiation) and damping
from the streaming velocities of collisionless particles (which introduces a cut-off in the
power spectrum). The behaviour for the growth of perturbations for each species is dif-
ferent on scales outside and inside the horizon and at different epochs (during radiation
domination and matter domination). We shall not discuss relativistic perturbation theory
but refer the reader to Ma & Bertschinger (1995) which covers this in appropriate details
and for two different choices of gauges (synchronous and conformal Newtonian). Instead
we shall only quote the final results from such calculations.

It is interesting to note that, the GR solutions are equivalent to the Newtonian treat-
ment on scales within the horizon for cold dark matter and baryons after decoupling.
Furthermore, in the current cosmological model, the most dominant form of matter is a
non-relativistic collisionless fluid (cold dark matter) which is the main actor in structure
formation so we shall instead spend more time discussing the evolution of this component.

1.3.1 Collisional fluid

Consider a fluid with pressure P , density ρ and velocity field u in an expanding Universe
and a potential Φ(x, t). The equations of motion of the fluid are:

Continuity ∂tρ+∇r · (ρu) = 0, (1.13)

Euler ∂tu+ (u · ∇r)u = −1

ρ
∇rP −∇rΦ, (1.14)

Poisson ∇2
rΦ = 4πGρ. (1.15)

If we now work in comoving coordinates x defined as r = a(t)x (the proper velocity
u = ṙ = ȧ(t)x+ v, v ≡ aẋ), the time and spatial derivatives transform as

∇r →
1

a
∇x;

∂

∂t

∣

∣

∣

r
→ ∂

∂t

∣

∣

∣

x
+
∂x

∂t

∣

∣

∣

r
· ∇x =

∂

∂t
− ȧ

a
x · ∇x. (1.16)

Perturbing ρ, u and Φ about their background values:

ρ→ ρ̄(t) + δρ ≡ ρ̄(t)(1 + δ) (1.17)

P → P̄ (t) + δP (1.18)

u → a(t)H(t)x+ v (1.19)

Φ → Φ̄(x, t) + φ (1.20)
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If one substitutes these back into the evolution equations of the fluid and keep only the
terms up to linear order we obtain the following linearised equations:

∂tδ +
1

a
∇ · v = 0 (1.21)

∂tv +Hv = − 1

aρ
∇δP − 1

a
∇φ (1.22)

∇2φ = 4πGa2ρ̄δ (1.23)

If we now take the time derivative of the perturbed continuity equation and combine
it with the perturbed Euler and Poisson equations we obtained the fundamental equation
for the growth of structure in Newtonian theory, which illustrates the competition between
infall by gravitational attraction and pressure support:

∂2t δ − 2H∂tδ − 4πGρ̄δ − 1

a2ρ̄
∇2δP = 0 (1.24)

If we additionally consider a barotropic fluid (P = P (ρ)) then δP = ∂P
∂ρ
ρ̄δ and if we

Fourier expand so that ∇2 → −k2 we arrive at:

δ̈k + 2Hδ̇k + (
c2sk

2

a2
− 4πGρ̄)δk = 0 (1.25)

This is the equation for a damped oscillator provided that c2sk
2

a2
> 4πGρ̄, giving rise to

acoustic oscillations in the fluid. For c2sk
2/a2 < 4πGρ̄ the system is unstable and undergoes

gravitational collapse. The characteristic scale of importance here is the Jeans length

λJ ≡ 2πa

kJ
= cs

√

π

Gρ̄
, (1.26)

which is the distance a sound wave can travel in a gravitational free-fall time. Only
perturbations with k < kJ can grow.

The equivalent equation for a collisionless collisionless fluid with no velocity stress
reduces is equivalent to that of a collisional fluid with zero pressure. Thus the equation
governing the growth of perturbations for dark matter in the linear regime is the same as
that for the baryons but omitting the pressure term. The fluid treatment for dark matter
becomes invalid in the regime where the velocity dispersion of the collisionless gas is non-
negligible and the particles can stream away. In those instances one needs to follow the
evolution of the full distribution function (using perturbation theory). This will not be
discussed here but the reader can find a discussion in Ma & Bertschinger (1995).

We summarise here the main results from the GR analysis of the growth and evolution
of the perturbations, quoting only results within the horizon:
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• radiation domination era inside the horizon: Cold dark matter grows δ ∝
log(t). This growth is due to the effect of radiation causing a more rapid expansion,
slowing down the growth of dark matter perturbations (Meszaros effect). Baryons
and radiation are still in the tight coupling regime thus δb ∝ δr and baryons undergo
acoustic oscillations.

• baryon decoupling/ recombination inside the horizon: Cold dark matter
grows as δc ∝ t2/3 as the Universe is very close to an Einstein de Sitter spacetime.
Baryons are no longer coupled to radiation, thus they are able to catch up with cold
dark matter.

1.4 Growth of matter and dark matter perturbations

after recombination

After matter-radiation equality, on scales of cosmological interest which are larger than
the Jeans scale of baryons, both fluctuations in CDM and the baryons have the same
dynamical equation. Quickly after recombination, the overdensity in baryons δb follows
that of cold dark matter δc and the matter behaves as a single collisionless fluid for which
δm = ρ̄bδb+ρ̄cδc

ρ̄b+ρ̄c
≈ δc. Furthermore the Universe in this regime is close to an Einstein

de-Sitter Universe (with zero curvature and no dark energy terms).
In this case the perturbation growth equation can be simplified to

δ̈m +
4

3t
δ̇m − 2

3t2
δm = 0, (1.27)

where we used the facts that H2 ∝ ρ̄ ∝ a−3, a ∝ t2/3 so H = 2/(3t) and 4πGρ̄ = 2/(3t2).
If we try solutions of the form δ ∝ tβ , we find that this equation admits two independent

solutions: a growing D+ ∝ t2/3 and decaying mode D− ∝ t−1, thus general solution is given
by their linear combination:

δm = AD+(t) +BD−(t), (1.28)

where A and B are constants. The growing modes eventually take over the decaying ones
and we can write the solution as δ ∝ D+(t) = D(t). For a general cosmology, the growing
mode is given by:

D(t) = H(t)

∫ t

0

dt′

a2(t′)H2(t′)
= H(t)

∫ a

0

da

ȧ3
(1.29)

1.4.1 Primordial Power spectrum and its relation to the Post-

recombination one

It is important to note that as the perturbations grow, the shape of the primordial power-
spectrum changes as the Universe evolves from the end of inflation down to the post-
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recombination era. One thus needs to relate the history of the growth of the perturbation
of all modes to the time of post-recombination. This can be all encapsulated in the transfer
function T (k) which relates the power spectrum in the post-recombination era to that of
initial conditions from inflation. In a way, the T (k) contains all of the relevant physics of
the early Universe which affected the primordial density field δi(x).This is given by

P (k, t) = 〈| δ(k, t)δ∗(k′, t) |〉 = Pi(k)D(t)2T 2(k, t) (1.30)

The computation of transfer functions for different kinds of cosmological models can be
done with codes such as CMBFast (Seljak & Zaldarriaga, 1996) or CAMB (Lewis et al.,
2000) in order to set up initial conditions of random gaussian fields for cosmological N-body
simulations. Examples of transfer functions are shown in Figure 1.4.
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Figure 1.3: Timeline of the Universe. Shortly after the Big Bang came a period of acceler-
ated expansion (inflation) during which the primordial quantum fluctuations got stretched
to macroscopic scales. At the end of inflations the scalar field decays giving rise to particle
creation. The Universe is in a hot state in which particles are coupled to the photons.
As the Universe expands and cools species come out of equilibrium until eventually at re-
combination the Universe is no longer opaque, neutral hydrogen is produced and photons
can freely stream giving rise to the CMB. The later phase of evolution of the Universe is
orchestrated by dark matter forming structures in a hierarchical fashion in which baryons
can fall into, form the first stars and galaxies and eventually galaxy clusters we see today.
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Figure 1.4: An example of a transfer function. The baryons show signs of oscillations (this
is due to the pressure term present in the equation governing the growth of perturbations)
which dampen away for small k (due to Silk damping). Dark matter also shows signs of
damping, this is due to the streaming velocities of the dark matter particles. For hot dark
matter this is quite pronounced and occurs at roughly the same k as for the baryons (this
is because these particles come out as relativistic at decoupling). For cold dark matter the
streaming velocities introduce a cut off too but at much larger k.
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Chapter 2

Dark Matter

The most abundant form of matter in the Universe is dark matter. It is thought to be
a collisionless fluid that comes out as non-relativistic at the time of decoupling and that
interacts only with ordinary matter solely through the force of gravity. In this section
we give a brief account of the observational evidence on different scales in support for
dark matter. We then discuss the motivations behind why this component cannot be
baryonic (the best evidence comes from a cosmological stand point) and introduce the idea
of cold dark matter that is at the heart of the standard cosmological model. We then close
this section by introducing the principal candidates beyond the standard model that have
been proposed by particle physics to account for the dark matter and currently ongoing
experiments.

2.1 Observational evidence

2.1.1 Galactic scales

On galactic scales, the evidence for dark matter first came from the observation of rotation
curves of spiral galaxies (e.g. (Rubin & Ford, 1970)). These measure the circular velocity
of galaxies as a function of radius using optical long-slit spectroscopy or the Doppler
shift from the HI 21cm hyperfine transition line associated with the neutral hydrogen gas
which extends much further than the optical part traced by the stars. Such measurements
have now been performed for a large amount of objects and they all exhibit the same
unexpected behaviour: they are flat beyond the edge of their exponentially falling stellar
disks. According to Newtonian gravity the circular velocity of a spherical system is defined
as v(r) =

√

(GM(r)/r), where M(r) is the enclosed mass within radius r. Outside the
stellar disk,M(r) is expected to be constant (the neutral gas is not self-gravitating and thus
counts as a tracer of the underlying potential), thus circular velocity should follow a Kepler
falloff v(r) ∝ 1/

√

(r). If Newtonian gravity is correct, then the flatness of these curves
imply that galaxies must be surrounded by extended dark matter haloes with M(r) ∝ r
beyond their stellar disks.
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Strong lensing in galaxies also another manifestation in support for dark matter. In
general relativity, light follows null geodesics and gets bent by mass. The projected visible
mass density in the plane of a galaxy is negligible to create large deflection angles at the
positions where multiple images and arcs appear in lensing galaxies. The multiple images
and arcs that are seen around some massive elliptical galaxies or in galaxy clusters imply
that the total projected surface density is much higher than that of the stars. In the
case, when a galaxy sits directly behind another, this configuration creates an Einstein
ring. This feature can be explained to first order if one models the matter distribution as
a singular isothermal sphere, where ρ ∝ r−2 (note these have also the same property as
to produce flat circular velocity curves with M(r) ∝ r). Many lenses have been studied
showing clear evidence for more matter surrounding galaxies beyond their optical radius.

2.1.2 Galaxy Cluster scales

Already in the 30s, Zwicky (1933) reported the need for dark matter to explain the mass of
the Coma Cluster . Using its member galaxies in combination with the virial theorem, he
estimated the total mass of Coma and noted that the inferred total mass was factor of 400
off compared to the sum of all the visible light in the cluster galaxies. He later concluded
that this dark matter could be observed with the aid of gravitational lensing (Zwicky,
1937). Fritz Zwicky was clearly ahead of his time and it took about 40 years for the idea of
dark matter to be really seriously considered by astrophysicists. Nowadays galaxy clusters
offer us a great number of probes for studying in detail their total matter content as well
as their dark matter content: stellar kinematics from the central galaxies, strong and weak
lensing, X-ray emission from the hot electron gas in hydrostatic equilibrium, the motion
of satellite galaxies. These various independent probes for mass give all similar answers
when compared to each other, providing clear evidence that dark matter dominates the
mass budget of galaxy clusters out to large radii (∼ 3Mpc)

2.1.3 Cosmological scales

Existence for (non-baryonic) dark matter is now also required from a cosmological point
of view. Detailed studies of the cosmic microwave background (CMB), in particular of
its angular temperature power spectrum can put strong constraints on the cosmological
parameters of a given model (see Figure 2.1). If dark matter would be baryonic it would
oscillate with the baryon fluid during radiation era and at radiation-matter decoupling,
the perturbations would also get Silk damped in such a way that there would not be any
structures on scales smaller than ∼ 1Mpc. Dark matter needs to be non-baryonic so that
the primordial potential in which baryons fall into can already be in place. The CMB
temperature power spectrum is sensitive to various cosmological parameters in particular
Ωb and Ωm. Matter raises the amplitude of the peaks due to growth of structure. Baryons
on the other hand change the amplitude of the the first peak but not the subsequent ones
due to the damped oscillations in the baryon fluid and Silk damping acting to suppress the
growth of perturbations on smaller scales.
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Figure 2.1: Temperature power spectrum (Planck Collaboration et al., 2013). The red line
is the best-fit ΛCDM model. Measurements like this can put strong constraints on the
matter content of our Universe.

2.1.4 Collisionless Cold Dark matter

The main support for cold dark matter (as opposed to hot dark matter) comes from nu-
merical simulations (see Figure 2.2). It seems the Universe in which we live in is consistent
with hierarchical growth of structure. Hot dark matter on the other hand exhibits an
anti-hierarchical behaviour in the growth of structure with clusters being the first objects
to form.

Support for the collisionless nature of dark matter comes from observations such as
that of the Bullet Cluster (Figure 2.3). This merging cluster shows two clumps of galaxies
in its optical image. In X-rays, the hot electron gas sits between the two clumps and shows
that it has been shocked. Weak lensing can also be used to map the total distribution of
matter to be situated in the two separate galaxy clumps. If dark matter was collisional it
would also sit at the same position of the hot electron gas. The fact that the dark matter
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Figure 2.2: Comparison between the observed distribution of galaxies from the CfA survey
(Huchra et al., 1983) and that of dark matter haloes (in which galaxies are believed to
reside) from simulations of hot (left) and cold (right) dark matter. It is clear that the
observed distribution of galaxies in the Universe has nothing to do with that envisaged by
HDM models. This demonstrates how simulations of the clustering of dark matter have
helped us establish the nature of the dark matter.

did not feel the shock but instead travelled with the galaxies through the merger supports
the collisionless nature of this dark matter fluid.

2.2 Dark matter as a particle

We discussed several observations which require that dark matter not to be baryonic. We
also argued that the dark matter is most likely a non-relativistic particle, i.e. cold. At
the elementary particle physics level, such a particle cannot be accommodated within the
standard model and one needs to consider extensions to it.

2.2.1 WIMPs

A popular dark matter particle candidate is the Weakly Interacting Massive Particle
(WIMP). It is a non-relativistic particle in the mass range 1GeV . mχ . 1TeV, which is
thermally produced in the early Universe and that interacts via the weak force and gravity.
Supersymmetry (an extension to the Standard Model) accounts for such particles, one of
them being the neutralino. There are three ways one could detect WIMPs. Firstly they
are hoped to be produced in a laboratory like at the Large Hadron Collider in CERN.
Second, these may be detectable via interactions with underground detectors (similarly to
neutrinos). Finally if they self-interact, these particles could produce gamma-rays. Some
of the best sites for indirect detection of WIMP dark matter are in the dwarf spheroidals
of the Milky Way which are known to be dark matter dominated objects.
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2.2.2 axions

Axions are light bosons that are produced non-thermally which can be either cold, warm
or hot dark matter depending on their production mechanism. In this sense, they are quite
different to WIMPs and thus their observational/detection prospects will be quite different.
One way to detect them is by axion-photon mixing. This is done by applying a strong
magnetic field to a microwave cavity (tuned to fulfil a resonance condition hν = mαc

2,
where mα is the axion mass). In the event an axion encounters the cavity, it will decay to
produce photons.
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Figure 2.3: The Bullet Cluster is an ongoing collision between two galaxy clusters. The
collisional gas component (in red) underwent a shock (see the clear bow shock on the right
hand) and is now trapped between the two sub-groups of the cluster. The galaxies and dark
matter (as traced by the weak lensing map in blue) however, are collisionless and easily
pierce through. This astrophysical object supports strongly the existence of collisionless
dark matter. Observations such as those and the profiles of hot electron gas in galaxy
clusters can put important constraints on alternative dark matter models like collisional
dark matter.



Chapter 3

Collisionless systems and the N-body
method

3.1 Dynamics of collisionless systems

The dynamics of the large-scale structures and stars in a galaxy can be characterised by
that of a collisionless fluid. This is because the relaxation timescale trelax ∼ 0.1N

lnN
tcross

(where N is the number of stars or dark matter particles and tcross is the time needed for a
stars/dark matter particle to cross the galaxy once) in these systems is exceedingly high.
A collisionless fluid is characterised by its distribution function f ≡ f(x,v) (df) and its
dynamical evolution is entirely described by the Collisionless Boltzmann Equation (CBE,
or also known as the Vlasov equation).

df

dt
=
∂f

∂t
+ v · ∂f

∂x
−∇Φ · ∂f

∂v
, (3.1)

where Φ is the smooth potential that is generated by the collection of phase-space elements
under which these move.

3.2 N-body method

Solving the CBE directly is an arduous task. However, it is possible to represent the
distribution function and follow its evolution through Monte-Carlo sampling (i.e. one can
represent the distribution function as a set of delta-functions in phase-space). In this way,
the problem is discretised and the distribution function is said to be “coarse-grained”. One
is then able to calculate the forces between every particle at each time step to describe the
evolution of the system according to the CBE. This is the idea behind the N-body method
and is currently the standard way of solving for gravity between multiple bodies.

In simulating the evolution of the CBE, the N-body method reduces the problem of
solving a partial differential equation in seven dimensions to that of a set of ordinary
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differential equations describing the evolution of the phase-space coordinates (x,v) for
each particle under the action of gravity:

dx

dt
= v;

dv

dt
= −∇Φ (3.2)

3.3 Force calculation and algorithms

The most straightforward method to calculate the gravitational force on a particle due to
all its neighbours is by direct summation.

Fij = −
∑

j 6=i

Gmimj(xi − xj)

|xi − xj |3
(3.3)

When the collisionless fluid is discretised with particles one quickly runs into troubles
due to the singularity which arises when the inter-particle distance is zero or very close
to zero leading to large scattering of particles. In order to avoid such problems, one
introduces a softening scale ǫ (generally specified by the mean inter-particle separation in
the simulation) and calculates the gravitational force on a particle as:

Fij = −
∑

j 6=i

Gmimj(xi − xj)

(ǫ2 + |xi − xj |2)3/2
(3.4)

Suitable compromised choices of softening are often invoked in order to balance between
accuracy of the scale one wished to resolve and the size of the time-step one wishes to use
(reference). The total time required to calculate all the forces in this pairwise operation
scales as N2, where N is the number of particles. This is problematic for most cosmological
applications and one needs to find other methods to calculate the forces for which theO(N2)
scaling can be reduced to O(N ln(N)) or even O(N). This thesis uses the gadget code
(Springel et al., 2001) and we shall describe its features in solving the N-body problem in
the next section.

3.3.1 Particle mesh method

The particle mesh method computes the forces between particles by solving the Poisson
equation on a grid of meshes. In this scheme, the simulation volume is divided up into a
grid of M3 meshes. The procedure is summarised in the following steps:

1. The first step is to calculate the density at each grid point according to the particle
distribution. This procedure is called mass-assignment and can be done in numerous
ways (nearest grid point, cloud in cell, ...).

2. The Poisson equation is solved on the grid. This is done in Fourier space. Thus the
Poisson equation reads −k2φk = 4πGρk, where ρk. The gravitational force at each
grid point can then be obtained by the Fourier transform of Fk = −φkk
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3. The forces on the grid points are then interpolated at the positions of the particles.

3.3.2 Tree method

In the tree method, particles are grouped according to their distances to the particle for
which the gravitational force needs to be calculated. The force from each group is then
replaced by its multipole expansion. If we keep a fixed number of multipole components,
the more distant particles can be grouped into larger ensembles without compromising the
accuracy of the force calculation.

The computational domain is hierarchically divided into a tree structure. At the base of
the tree is the root node. This is then subdivided into which can be sub-divided further into
branches which are subdivided until one reaches a number of one particle per subdivision
- these are called the leaves. There are many ways of dividing space up but a commonly
used method is the Oct-Tree method of Barnes & Hut (1986), where each parent cube is
divided into 8 equal children cubes. This is shown in Figure 3.1.

Figure 3.1: Illustration of an Oct-Tree in two dimensions. The far left shows the root which
is then divided further into branches (two middle panels) which are also divided down to
the leaves (last panel) which have an occupation number of one.

Once the tree is built, one evaluates the potential of each tree node as:

Φnode(r) = −G
∫

d3x
ρx

√

ǫ2 + |r− x|2
, (3.5)

where (x) is the distance to the centre of mass of the node. The density within the
node is a sum over the particles (represented by delta functions):

ρnode(x) = Σ
mα

√

ǫ2 + |r− xα|2
(3.6)

Since |r| >> |xα|, we can Taylor expand to get the multipole expansion for the node:

Φnode(r) = −GΣmα(
1

s
+
rix

α
i

s3
+

3
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One can then calculate these multipole sums for each node and sum over all nodes to
obtain the force at a given point starting from the root node. This procedure of force
computation is called the tree walk. In the Barnes & Hut (1986) tree walk, the multipole
expansion of a node of size l is used only if r > l/θ, where r is the particle node distance,
l the size of the node and θ is the opening angle which controls the accuracy of the force
computation. If this criterion is satisfied by a node then the tree walk along that branch
is complete, otherwise the walk is continued with all its siblings.

3.3.3 TreePM method

As its name suggests the TreePM method is a hybrid between the tree and PM methods. In
this scheme the small-range interactions are treated with a hierarchical tree and the long-
range ones with the particle mesh algorithm. This is a popular technique used in state-
of-the-art cosmological simulation codes such as gadget Springel et al. (2001); Springel
(2005).

3.4 Cosmological Simulations

The study of the evolution of the density field in the non-linear regime (δ & 1) can only be
addressed by N-body techniques. The cosmological simulation of dark matter is generally
carried out in a box of size L. This scale varies depending on the purpose of the simulation,
but should be large enough to contain a representative volume of the Universe (e.g. a
scale where the Universe is homogeneous, L ≥ 100 h−1Mpc, if one wishes to simulate
the evolution of the dark matter density field to the present day). Periodic boundary
conditions are used to account for the finiteness of the box (Hernquist et al., 1991). The
generation of initial conditions can be split into two parts. The first is to set up a uniform
distribution of particles to represent the unperturbed Universe. The second is to impose
density perturbations with the desired properties of the cosmological model taken into
consideration 1

3.5 Initial Conditions

The first step is not a trivial task. When generating a random distribution of mass in a box
of side L, one introduced white noise (i.e. P (k) ∝ kn with n = 0) and in the absence of any
other fluctuations, nonlinear objects will quickly form when running the simulation. One
could instead consider creating a regular cubic lattice of particles. However this leads to
strong direction preference on all scales because the grid spacing introduces a characteristic
length scale on small scales. A good solution to this problem is to create a glass-like particle
load proposed by White 1996 in White S. D. M. in Schaeffer et al. (1996). Particles are

1for a random Gaussian field this is encapsulated in the power spectrum P (k) which can be computed
from linear perturbation theory.
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initially placed at random within the computational volume and then evolved by N-body
integration but with the acceleration sign reversed so that the mutual gravitational forces
become repulsive. The particles then settle into a glass-like distribution which has no
preferred direction and the force on each particles is approximately zero.

The initial density field for dark matter is a random Gaussian field 2 and thus is entirely
characterised by its power spectrum P (k). Thus in order to impose the density perturba-
tions on the particle load in the simulation box, this power spectrum can be generated by
using the Zel’dovich approximation to impose displacements on the particles about their
unperturbed position.

3.5.1 The Zel’dovich Approximation

The Zel’dovich is another way of describing the evolution of the density field in the linear
regime (δ < 1) but it is particularly useful for setting up initial conditions for cosmological
simulations (which we will describe in section Y). Neglecting the decaying mode, the density
contrast evolves self-similarly δ(x, t) = D(a(t))δi(x). This must also hold for the peculiar
velocity and the gravitational acceleration. From the Poisson equation this implies that:

φ(x, t) =
D(a(t))

a
φi(x) where ∇2φi(x) = 4πGρa3δi(x). (3.8)

The linearised Euler equation v̇ + (ȧ/a)v = −∇φ/a can then be integrated for fixed x
to get:

v = −∇φi

a

∫

D

a
dt. (3.9)

If we integrate a second time using the fact that v = aẋ we get:

x = xi −
∫

dt
∇φi

a2

∫

D

a
dt. (3.10)

By definition, D(a(t)) satisfies the fluctuation growth equation δ̈ + (2ȧ/a)δ̇ = 4πGρδ
so that

∫

(D/a)dt = Ḋ/4πGρa and it can be shown that:

x = xi −
D

4πGρa3
∇φ0, v = − Ḋ

4πGρa2
∇φi(x) (3.11)

This formulation of linear perturbation is due to Zel’dovich (1970). It is the Lagrangian
description of the growth of structure giving the displacement x − xi and the peculiar
velocity v of each phase-space element of the distribution function in terms of the initial
position xi. Zel’dovich proposed that these equations could be used to to extrapolate
the evolution of structures up to the quasi-linear regime (δ ∼ 1). This is the Zel’dovich
approximation. In this scheme the particle trajectories are straight lines with distance
traveled proportional to D.

2This is now confirmed by the Planck data which has put strong constraints on primordial non-
gaussianity.
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In a more compact form the Zel’dovich can be written as:

x = q−D(t)ψ(q), (3.12)

where x is the comoving Eulerian coordinate of a particle, q is the Lagrangian coordinate
denoting its initial position, D(t) is the growth factor of linear fluctuations and ψ is the
displacement vector and describes the spatial structure of the density fluctuation.

3.5.2 Use in cosmological N-body simulations

We saw earlier that the Zel’dovich approximation is expressed as x = q − D(t)ψ(q). We

also know that ψ(q) = ∇φi(q)
4πGρ̄a3

and its Fourier transform can be written as ψ(k) = ikφi(k)
4πGρ̄a3

=

−ik δi(k)
k2

(where we used the Poisson equation for φi(x) in Fourier space −k2φi(k) =
4πGρ̄a3δi(k). Using this fact, the displacement vector can be written as a discrete Fourier
Transform:

ψ(q) = α
∑

ikcke
ik·q (3.13)

where the sum is over all possible wavenumber from the fundamental mode to that of the
Nyquist wavenumber. The power spectrum dependence comes in the real and imaginary
parts of the Fourier components ck = (ak−ibk)/2 which are independent Gaussian numbers
with zero mean and dispersion σ2 = P (k)/k4.

ak =

√

P (k)

k2
Gauss(0, 1) ; bk =

√

P (k)

k2
Gauss(0, 1). (3.14)

To compute the displacement for each particle position, one then generates a realisation
of {kx, ky, kz, ck} for the given power spectrum on a grid in Fourier space. Then one
needs to FFT each of the grids to get ψ(q)x, ψ(q)y, ψ(q)z in real space. At this point
one applies the Zel’dovich approximation to displace the particles from their Lagrangian
positions (q → x). In the case of regular grid particle load this is straightforward but for
a glass one needs to use an interpolation scheme to apply those displacements correctly
to the initial particle distribution. Velocities can be obtained from using x = −Ḋ(t)ψ(q).
This is a general outline and the details on setting up initial conditions can be found in
Efstathiou et al. (1985). The later evolution of the dark matter density field can then be
followed by integrating the equations of motion of the particles using the N-body method
described earlier.

3.6 The State of the Art

Some of the first cosmological simulations which were carried out used modest particle
numbers (323 in Davis et al. (1985)). Yet, the results obtained from such simulations were
critical to assess the nature of the dark matter through its clustering properties. The direct
comparison between the results from simulations assuming different kinds of dark matter
particle properties with the large scale structure managed to rule out Hot Dark Matter in
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Figure 3.2: The Millennium simulation carried out by the VIRGO Consortium followed
the evolution of 10 billion particles in a box of 500 h−1Mpc starting from z = 127 to
z = 0. The particle mass was mp = 8.6 × 108 h−1M⊙ and the Plummer softening length
was ǫ = 5 h−1 kpc It resolved virialised bound objects from galaxy clusters to a minimum
dark halo mass of 1.7× 1010 h−1M⊙.

favour of Cold Dark Matter which is now at the heart of our currently favoured standard
cosmological model, the ΛCDM paradigm. Over the years (with improvements in algorithm
scalability and computational power) the number of particles within a given box size has
dramatically increased. This has enabled cosmological N-body simulations to study the
clustering of dark matter over a wide dynamic range from the large scale structures within
our current Hubble radius (Angulo et al., 2012) to that of galaxies (Boylan-Kolchin et al.,
2009) all the way down to dark substructures orbiting Milky Way like dark matter haloes
Diemand et al. (2007); Springel et al. (2008). The Millennium simulation is an example of
such large cosmological dark matter simulations (Springel et al., 2005) as shown in Figure
3.2.
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Zoom Simulations

For some applications, it is important to resolve certain objects to much higher-resolutions
such as when studying in detail the assembly of galaxy cluster or Milky Way sized dark
matter haloes. Obviously by increasing the number of particles everywhere in an entire
cosmological simulation box only makes the task more difficult. One technique that is
widely used is the zoom-in method. First, one identifies an object of interest (e.g. galaxy
cluster, Milky Way like dark matter halo, a void) within a large cosmological box for
re-simulation. One then tracks all the particles within a certain volume associated with
the object of interest and tracks their position back to their initial conditions and define
a Lagrangian volume at zinit. At this point one increases the number of particles in that
region (thus lower the mass of the particles) and keep the regions outside this volume to the
same initial resolution of the simulation. This technique was pioneered by Navarro & White
(1994) and is a common method to run zoom-in simulations of individual objects. The
simulations presented in this thesis were set-up in such a way.
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Chapter 4

Shallow Dark Matter Cusps in
Galaxy Clusters

4.1 abstract

We study the evolution of the stellar and dark matter components in a galaxy cluster of
1015M⊙ from z = 3 to the present epoch using the high-resolution collisionless simulations
of Ruszkowski & Springel (2009). At z = 3 the dominant progenitor halos were populated
with spherical model galaxies with and without accounting for adiabatic contraction. We
apply a weighting scheme which allows us to change the relative amount of dark and stellar
material assigned to each simulation particle in order to produce luminous properties which
agree better with abundance matching arguments and observed bulge sizes at z = 3. This
permits the study of the effect of initial compactness on the evolution of the mass-size
relation. We find that for more compact initial stellar distributions the size of the final
Brightest Cluster Galaxy grows with mass according to r ∝M2, whereas for more extended
initial distributions, r ∝ M . Our results show that collisionless mergers in a cosmological
context can reduce the strength of inner dark matter cusps with changes in logarithmic
slope of 0.3 to 0.5 at fixed radius. Shallow cusps such as those found recently in several
strong lensing clusters thus do not necessarily conflict with CDM, but may rather reflect
on the initial structure of the progenitor galaxies, which was shaped at high redshift by
their formation process.

4.2 Introduction

Brightest cluster galaxies (BCGs) are the most massive elliptical galaxies in the Uni-
verse at the extreme end of the galaxy luminosity function and perhaps “special” (see
Paranjape & Sheth, 2012). These objects are intriguing because they do not follow the
same scaling relations as normal giant ellipticals. Using the Sloan Digital Sky Survey
(SDSS), von der Linden et al. (2007) found that BCGs deviate systematically from the
Faber & Jackson (1976) and the Kormendy (1977) relations with lower velocity dispersions
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and larger sizes respectively. Early theoretical studies investigated the role of cooling flows
(Fabian, 1994) in BCG formation. This hypothesis is disfavoured by observations with
Chandra and XMM-Newton which show that such flows are much weaker than required,
as are the star formation rates in the central galaxies of clusters (McNamara et al., 2000;
Fabian et al., 2001). Another scenario has BCGs growing by feeding on smaller galaxies
(minor mergers). This is the notion of galactic cannibalism (Ostriker & Hausman, 1977;
Hausman & Ostriker, 1978).

In the ΛCDM scenario, structures build-up hierarchically through accretion and merg-
ers of smaller progenitors. Groups form before clusters and have sufficiently low relative
velocities that galaxy-galaxy mergers can occur before cluster formation, thus enhancing
the formation of a massive central galaxy. De Lucia & Blaizot (2007) use semi-analytic
galaxy formation models to show that in the ΛCDM cosmology, BCGs form primarily
through in-situ star-formation at high redshifts, z ≥ 3, with subsequent mass growth dom-
inated by non-dissipational merging. Similar processes are seen in hydrodynamical cos-
mological simulations of massive galaxy formation (Naab et al., 2009; Oser et al., 2012a;
Feldmann et al., 2011) although these are typically less effective at suppressing star for-
mation at late times than semi-analytic models, leading to galaxies which are “younger”
than those observed.

From this, it seems that many aspects of the late assembly of BCGs can be modelled
without considering the early star formation phase. Dubinski (1998) was an early example
of such work based on numerical N-body simulations of collisionless mergers of galaxies in a
cosmological context. Dubinski found that the properties of cluster BCGs can be naturally
explained by merging of galaxies which have already formed their stars at high redshift.
This idea was further investigated by Ruszkowski & Springel (2009) (RS09) who studied
the deviations of BCGs from the Kormendy and FJ relations in a ΛCDM simulation.

In relaxed clusters, BCGs reside at the bottom of the potential well, making them ideal
probes of the distribution of dark matter from kpc to Mpc scales. Sand et al. (2002, 2004,
2008) studied a selection of clusters combining stellar dynamical modelling and strong
gravitational lensing in order to infer the inner slope of the dark matter density profiles.
Their studies found values for the logarithmic slope of the dark matter density profile
γ = −d ln(ρ)/d ln r < 1, at odds with the predictions of dark-matter-only simulations of
halo formation which generally follow the NFW profile with γNFW = 1 (Navarro et al.,
1997). More recently, Newman et al. (2011) revisited the study of Abell 383 by Sand et al.
(2008), combining stellar kinematics, strong and weak lensing and X-ray data to deduce
an inner slope of γ = 0.59+0.30

−0.35 at 95 percent confidence. These authors suggest this may
indicate a genuine problem with our understanding either of baryonic evolution or of the
nature of the dark matter.

Indeed, some recent hydrodynamical simulations of galaxy formation in clusters indi-
cate a steepening of the inner-slope of the dark matter profile (Gnedin et al., 2004, 2011;
Sommer-Larsen & Limousin, 2010), exacerbating the core-cusp problem . More gentle
contraction is seen in other simulations (e.g. Duffy et al., 2010) but not on the scales in-
vestigated by Newman et al. (2011). A simulation in which dynamical friction significantly
erodes the cusp at the center of ellipticals was presented by Johansson et al. (2009) but on
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the scale of the central galaxy of a small group. However, the final masses of the central
galaxies in these simulations are in general a factor of two or three higher than expected
from abundance matching arguments (Guo et al., 2010; Moster et al., 2010; Behroozi et al.,
2010), implying the need for a signicantly improved treatment of baryonic astrophysics.
El-Zant et al. (2004) claimed that shallower cusps could be produced in a cluster through
dynamical heating by the galaxies. However, they treated galaxies as unstrippable point
masses which is too unrealistic to address the issue in quantitative detail.

At this stage it still seems interesting to address the second question by Newman et al.
(2011): is the presence of shallow dark matter cusps at the centre of clusters a signifi-
cant challenge to CDM? We use the RS09 simulation to test whether such cusps can be
created through dry (i.e., gas-free) mergers. Recent observations of massive ellipticals at
z = 2 have shown that they were more compact than similar mass galaxies today (see
e.g. van Dokkum et al., 2008). Dry, predominantly minor mergers have also been pro-
posed as a possible mechanism to drive the required size evolution (e.g., Naab et al., 2009;
Bezanson et al., 2009)

In this context a significant limitation of the RS09 simulations was that the galaxies
they inserted at z = 3 had stellar masses an order of magnitude larger than expected
from abundance matching arguments (Moster et al., 2010) and were assumed to follow the
present-day mass-size relation. Here we remedy the inconsistencies between the simulations
and observations by using a method that re-assigns the mixture of stellar and dark matter
in each simulation particle. This enables us to study the evolution of stellar and dark
matter distributions for different levels of initial compactness and stellar mass.

In Section 2, we give a description of the simulations as well as of the weighting scheme
used in this study. We also present results on the mass and size growth of the BCG for
different initial assignments of stars and dark matter. In Section 3, we look at how the
initial slope of the dark matter evolves from z = 3 to the present. We discuss our results
and conclude in Section 4.

4.3 Numerical Methods

4.3.1 Simulation

The simulations used for this study are described in detail in Ruszkowski & Springel (2009),
(RS09) and we give only a short summary here. A cluster mass dark matter halo of 1015M⊙

was identified in the Millennium Simulation (Springel et al., 2005). The cosmological pa-
rameters of this simulation are Ωm = 0.25, ΩΛ = 0.75, a scale-invariant slope of the power
spectrum of primordial fluctuations (n = 1.0), a fluctuation normalization σ8 = 0.9, and a
Hubble constant H0 = 100 h km s−1Mpc−1 = 73 km s−1Mpc−1.

The cluster was then re-simulated using a zooming technique with a mass resolution
of m = 1.57 × 107h−1M⊙ and comoving softening length ǫ = 2.0 h−1 kpc. At redshift
z = 3, the 50 most massive progenitors of the final cluster were identified and replaced
by spherical equilibrium models in which stars were distributed according to a Hernquist
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(1990) profile embedded in a NFW dark matter halo (Navarro et al., 1997). The masses of
the dark matter and star particles were set to be identical mdm = m∗ = 1.57× 107 h−1 M⊙

and they were assigned a softening length of ǫ = 1 h−1 kpc. comoving, half that of the
other dark matter particles from the original resimulation. Throughout this paper we use
h = 0.73 and our mass and length units are thus in kpc and M⊙.

Two simulations were run with different initial galaxy models: one in which the dark
matter was adiabatically contracted following Blumenthal et al. (1986) and one where it
retained an undisturbed NFW profile. We shall refer to these as models A and B respec-
tively. The Blumenthal et al. (1986) formalism over-predicts the amount of contraction
observed in many hydrodynamical simulations (Gnedin et al., 2004), however through the
inclusion of uncompressed and compressed dark halo models, we can probe two alternative
regimes. If dry-merging is indeed the main driver in the late assembly of BCGs and if the
RS09 initial galaxies were realistic, then the “real” solution would lie between these two
models.

In fact, however, the galaxies which RS09 inserted at redshift z = 3 followed the present-
day mass-size relation from Shen et al. (2003) and assumed a stellar to dark matter mass
ratio m∗/M = 0.1. This value is too large by a factor of 10 according to recent results
from matching the observed high-redshift abundance of massive galaxies (Moster et al.,
2010; Behroozi et al., 2010; Wake et al., 2011). We note that many other simulations in-
vestigating similar processes have like-wise assumed over-massive stellar components (e.g.,
Nipoti et al., 2009; Rudick et al., 2011). However, we point out that for a given mass res-
olution, more massive stellar bulges are represented by a larger number of particles which
considerably improves the numerical convergence of the simulations.

Not surprisingly, the final merger remnants in RS09 were also too massivem∗ ∼ 1013M⊙

with half-mass radii which were too large (∼ 100 kpc) compared to real BCGs. These
generally do not exceed re ∼ 50kpc (Bernardi et al., 2007).

In order to study more consistently the change in the slope of dark matter density
profiles at the centre of ΛCDM clusters, we need to address the question with galaxies
that have stellar properties consistent with observations. We also need to test whether
the final stellar mass of the merger remnant agrees with the stellar to halo mass relation
(SHM) at z = 0 (Guo et al., 2010; Moster et al., 2010; Behroozi et al., 2010). We employ
a weighting procedure to re-assign the luminous component of every initial galaxy such
that only one percent of its total dark matter mass is locked in stars. For the range of halo
masses (1013M⊙ − 1012M⊙) that we populate, abundance matching implies that this ratio
is rather constant. Additionally, our weighting scheme enables us to change the sizes of the
luminous components to study the assembly of the BCG for different levels of compactness
while keeping the total initial stellar mass fixed. We present this scheme in the next section.

4.3.2 Weighting Scheme

Here we describe our method for re-assigning simulation particles in the initial conditions
so that the light to stellar mass ratio and the size of the luminous component of a galaxy
can be varied. Our scheme is similar to that of Bullock & Johnston (2005) and is applicable
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Figure 4.1: Differential energy distribution for the proto-BCG for the total mass and
light contributions for three test cases re = reRS09

/1, reRS09
/2, reRS09

/3, reRS09
/5. Although

the reRS09
/5 histogram intersects the total differential energy distribution, the particles in

those energy bins are below our spatial resolution of ǫ = 1 h−1 kpc.
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Figure 4.2: ρr2 profiles vs. radius for the four different realisations. The target functional
forms of each realisation are overplotted in solid colored lines.
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to spherically symmetric density distributions. A galaxy is represented by a distribution
of N particles of mass Mtot/N = mp and phase-space coordinates (x,v) which generate
the potential Φ = Φdark+Φstellar = ΦNFW+ΦHernquist. Each particle of energy E = 1

2
v2+Φ

now simultaneously represents dark matter and stars in different amounts according to a
weight function ω(E) = f∗(E)/f(E). This is the ratio between the stellar distribution
function (df) and the total df. One can construct the stellar df in the following way.

In computing f∗(E), one assigns the particles a spherical number density distribution
ν(r) and solves the Eddington inversion formula:

f∗(E) =
1√
8π2

∫ E

0

dΨ√
E −Ψ

d2ν(Ψ)

dΨ2
+

1√
E
dν

dΨ

∣

∣

∣

∣

Ψ=0

, (4.1)

where Ψ = −Φ + Φ0 and E = −E + Φ0 = Ψ − v2/2 are the relative potential and total
energies respectively. The potential used to generate the model galaxies in RS09 was a
linear combination of a Hernquist and an NFW potential, both of which tend to zero in the
limit r goes to infinity thus Φ0 = 0. We choose ν(r) to follow a Hernquist profile (1990):

ν(r) =
a

r(r + a)3
. (4.2)

The total df is the ratio of the differential energy distribution N(E) = dM/dE =
f(E)g(E) and the density of states g(E) which is solely defined by the potential Φ:

g(E) = (4π)2
∫ rE

0

r2
√

2(E − Φ(r))dr. (4.3)

Since Φ(r) and N(E) can both be measured directly from the simulation’s initial condition,
this determines f(E).

Note that the only free parameter we have introduced is the scale radius a for the light
distribution which is related to the half-light radius by a = re/(

√
2 + 1). Within certain

limits we can vary the relative mixture of dark and luminous matter to represent, for
example, less massive and more compact bulges. This has the advantage of allowing us to
study aspects of the assembly of massive galaxies from z = 3 to z = 0 without having to run
additional CPU intensive simulations, simply by tracking the weights to the final merger
remnant. This scheme allows multiple interpretations of a single simulation. However, for
our purposes the stellar mass within each galaxy is kept fixed, its value being dictated by
abundance matching arguments, so it is the stellar and dark matter distributions which
vary with the total mass distribution held fixed. Note that this implies that the initial
dark matter distributions in the adjusted galaxies are no longer those expected naturally
in ΛCDM. Thus while we can address issues of how the mixing of the two components
changes inner profile shapes and is affected by initial compactness, we cannot expect the
final DM distributions to be realistic.

Figure 1 shows the differential energy distribution for the most massive of the z = 3
galaxies (the dark halo and stars of the main BCG progenitor) as a function of energy.
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Overplotted are stellar differential energy distributions for four reinterpretations with dif-
ferent galaxy sizes: the original effective radius used in RS09 and the same reduced by
factors of two, three and five. To show more explicitly that our method works we present
ρr2 profiles in Figure 2. Note that changing the sizes of the stellar component for a fixed
m∗/Mhalo ratio, implies substantial changes in the inner slope of the dark matter profile.
The reduction of the stellar mass by a factor of 10 from that assumed in RS09 also means
that both the uncontracted and contracted models now have overly concentrated dark
matter distributions in the centres of the galaxy subhalos, except at very small radii where
the reduced radii can lead to an increase of stellar density relative to RS09.

The maximum extent to which we are able to rescale the stellar component is set by
the total mass profile. This is saturated by the stars alone at the softening radius if the
RS09 sizes are reduced by a factor of ∼ 5 (see Figure 1).

The initial and final light profile shapes in the RS09/1 interpretation will be the same
as in the original simulation, as only the stellar masses of every galaxy are changed (the
inner dark matter profiles will differ, however, since they now contain the additional mass
which used to be assigned to stars). This also means that the galaxies no longer lie on the
Shen et al. (2003) stellar mass-size relation. In order to put them back on it (within the
scatter) we need to reduce the sizes by factors of ∼ 5.

Recent observations show, however, that z = 2 elliptical galaxies were more compact
than implied by the local relation (van Dokkum et al., 2008). Unfortunately, our spatial
resolution limit does not permit us to consider such small sizes. We stress that these ob-
servations still need to be treated with caution as the galaxy stellar masses are estimated
photometrically. Martinez-Manso et al. (2011) argue that dynamical masses of compact
galaxies at redshift z = 1 may be six times lower than some photometric estimates. Nev-
ertheless if the photometrically determined stellar masses of galaxies at redshift z = 2 are
even approximately correct, the galaxies should be even smaller than we assume in this
paper. As we will see, the exercise presented here can nonetheless give insight into the
puffing-up of BCGs by minor mergers and its dependance on the initial compactness of the
galaxies.

4.3.3 Results for the BCG evolution

Size growth of the BCG

Fixing the stellar masses within all haloes according to abundance matching arguments
(and hence reducing them by an order of magnitude from those originally assumed by
RS09), we studied four assumptions for the compactness of the galaxies re = reRS09

/1,
reRS09

/2, reRS09
/3, reRS09

/5 in each of our two simulations. The trends arevery similar in
the two models. We find that the relative growth in size of the BCG from z = 3 to z = 0
is not identical for different assumptions about initial concentration. This is illustrated
in Table 1, where we give the growth factors as characterised by the increase in half-
light radius. The size of the BCG at z = 0 in the original RS09 simulations was high
by a factor of two compared to local BCGs. However, in the RS09/5 case, the sizes of
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the initial galaxies correspond to those of low-redshift largest ellipticals of similar stellar
mass (within the scatter of the Shen et al. 2003 relation) and the most massive BCG
progenitor grows by a factor of 4, reaching a size that is in reasonable agreement with
observed BCGs. This supports the idea that massive ellipticals can grow rapidly in size
through repeated minor mergers in a cosmological context (Naab et al., 2009; Oser et al.,
2010, 2012a; Shankar et al., 2011).

Mass growth of the BCG

Turning to the mass growth of the BCG, the main progenitor starts with a stellar mass of
∼ 2.5 × 1011M⊙ at z = 3 and the final merger remnant at z = 0 has a total stellar mass
of 6 to 7× 1011M⊙. For the cluster mass we are considering here (∼ 1015M⊙), abundance
matching suggests m∗/Mhalo = 0.001 (see Fig. 2 of Guo et al. (2010)). Considering that
semi-analytic models predict that 80 percent of the stars which end up in a BCG are
already formed by z = 3 (De Lucia & Blaizot, 2007) our value of m∗/M(z = 0) = 0.0006
is a considerable improvement over the value prior to rescaling (m∗/M(z = 0) ∼ 0.01).
We note that this factor is still somewhat lower than expected from semi-analytic models.
A quick query in the Millenium database indicates that only 30 percent of the stars in the
z = 0 BCG in the cluster come from the 50 most massive progenitor haloes at z = 3. The
missing contribution comes from smaller subhaloes which were not populated with stars
in the simulation. Figure 3 shows the normalised radial distribution of simulation BCG
stars coming from different galaxies at z = 0. The two panels illustrate the process of mass
aggregation for two extreme interpretations (RS09/1 and RS09/5). The stars coming from
the proto-BCG (in-situ) are represented by the solid black line and those accreted from
other galaxies by the dashed-dotted line. Contributions from individual galaxies are shown
by coloured lines. Between z = 3 and z = 0 the BCG was subjected to two mergers with
mass ratios of about 3:1 and six with about 10:1. These are responsible for the inside out
growth of the BCG.

For the most compact galaxy interpretation (RS09/5), 30 percent of the BCG mass
comes from accretion which dominates beyond ∼ 30kpc. This is in contrast with the
extended galaxy (RS09/1) where this transition occurs at 60kpc. Note that little of the
accreted mass reaches the centre. Most gets deposited on the outskirts leading to inside-out
growth.

The reason why the mass growth factor decreases with increasing compactness is that
the initial compact galaxies have more stars on higher binding energy orbits than their
less compact counterparts (as can be seen in Figure 1). These stars are harder to unbind.
Thus, as encounters take place, less stellar mass is stripped and deposited on the BCG.
More remains bound to the original galaxies.

Another interesting aspect of our numerical experiment is the scaling between total
stellar mass and effective radius. For the most extended galaxies, the BCG radius and
mass scale as re ∝ M . For the compact galaxies in the RS09/5 interpretation this scaling
is almost re ∝ M2. This latter scaling agrees with van Dokkum et al. (2010) who studied
the growth of compact galaxies at fixed number density finding re ∝ M2.04. Thus for
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Run re/kpc ref/reiA Mf/MiA ref/reiB Mf/MiB
RS09/1 38 2.7 2.9 2.5 2.9
RS09/2 19 3.2 2.7 3.0 2.6
RS09/3 13 3.6 2.5 3.1 2.5
RS09/5 8 4.3 2.4 3.8 2.4

Table 4.1: Initial half-light radii rei, size and mass growth factors (defined as the ratio of
initial and final half-light radii and stellar masses) for the eight interpretations. The initial
stellar mass of the largest BCG progenitor is 2.5× 1011M⊙ in all cases.

smaller sizes, we get a stronger size evolution in better agreement with observation. Seeing
that our weighting scheme produces central galaxies with appropriate stellar masses for
their host dark halo, we now address the issue of the change in inner slope of the dark
matter profile in the presence of a baryonic component, and how this varies depending on
the relative distribution of stars and dark matter.

4.4 Evolution of the dark matter slope

4.4.1 Methodology

In relaxed clusters, BCGs are usually coincident with the centre of the cluster, defined
theoretically as the bottom of its gravitational potential well and empirically as the centre
of the X-ray emitting hot gas. Thus we define the centre of the galaxy (BCG) and cluster
as the position of the particle with the minimum potential identified by the Subfind al-
gorithm (Springel et al., 2001).We then compute density profiles in spherical shells around
this centre, using 44 bins spaced logarithmically between 0.1kpc and 2500kpc. The intrin-
sic slopes of the density profiles are computed by numerical differentiation using a 3-point
Lagrangian interpolation as in Navarro et al. (2010).

4.4.2 Results for the original RS09 simulations

We begin by analysing the simulations as originally presented in RS09. In Figure 4, we
present the intrinsic logarithmic slope γ = −d ln(ρ)/d ln r as a function of radius r for the
dark matter (red dashed lines) and for the total matter (solid black lines). The dashed
horizontal line γ = 1 marks the asymptotic value that the NFW profile should reach as
r → 0. Results are given for the main BCG progenitor at z = 3 in the left panels and
the final BCG at z = 0 in the right panels. The upper panels are for run A (contracted)
and the lower panels for run B (uncontracted). The BCG progenitors at z = 3 have inner
slopes of γ ∼ 1.3 and γ ∼ 1 at 5 kpc for the dark matter in the contracted and uncontracted
models, respectively. In the final systems at z = 0 these latter inner slopes reach γ ∼ 0.9
and γ ∼ 0.8. These are depressions of 0.2 < ∆γ < 0.4 with respect to the initial slope
at this radius. However, as already noted these initial conditions are inconsistent with
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Figure 4.3: Normalised radial distribution of stellar mass in the z = 0 BCG coming from
different contributing galaxies for model A (each colour). The solid line shows the stars
coming from the largest progenitor, taken to be the proto-BCG (in-situ). The dashed-
dotted line is the radial distribution of stellar mass contributed by accreted galaxies. The
top and bottom panels show the results for two interpretations (RS09/1 and RS09/5). In
the RS09/5 case, accreted material contributes 50 percent of the mass budget already at
30 kpc while this occurs at 60 kpc for the RS09/1 case. The arrows point out the radii
containing 10, 25, 50 and 75 percent of the BCG stars.
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observations of z = 3 galaxies assuming a ΛCDM universe. The behaviour here merely
serves to prove that collisionless evolution can reduce the slope of the inner dark matter
profile. We still need to test whether this holds for galaxies with more realistic initial
configurations, so we turn to results from our weighting scheme.

4.4.3 Dark matter slope evolution for other BCG stellar mass

profiles

Figure 4 shows the initial and final slopes of the dark matter density profiles for each of our
reinterpretations of the two simulations using the weighting scheme presented above. The
total mass does not of course change from one interpretation to another, only the partition
between stellar and dark matter distributions does. Because we have decreased the stellar
mass by a factor of ten, the dark matter mass increases to compensate. The distribution
of the dark matter varies however, according to the concentration we assume for the stellar
mass. In the RS09/1 interpretation, there is additional dark matter at all radii and γ
becomes more negative for the dark matter everywhere. In the RS09/5 interpretation
however, stars are much more concentrated which results in a shallower initial slope near
the centre. The slopes of the dark matter profiles retrieved from the weighting scheme are
represented by the solid coloured lines.

The initial dark matter profiles in each interpretation differ from each other in the inner
regions where stars contribute significantly to the mass budget (5−10 kpc) and asymptote
to the same profiles at larger radii. At z = 3, the slopes in model A range from γ ∼ 1.4 to
1.0 at 5 kpc, and γ ∼ 1.6 to 1.5 at 10 kpc between RS09/1 and RS09/5. At z = 0 the final
slopes take values γ ∼ 0.5 to 1.0 at 5 kpc and γ ∼ 1.2 to 1.0 at 10 kpc. These are changes
with respect to the initial slopes of 0.4 < ∆γ < 0.5 at both 5 kpc and 10 kpc. Note that
in a few cases (RS09/4 and RS09/5 model A) the final slopes are already shallower than
γ = 1 below 10 kpc, a region of interest for observations using stellar kinematics.

For our model B, at z = 3 the slopes range from γ ∼ 1.3 to 1.0 to γ ∼ 1.6 to 1.4
at 5 and 10 kpc respectively. At z = 0 we also observe significant changes in the inner-
slope between 0.3 < ∆γ < 0.4 and 0.4 < ∆γ < 0.6 at 5 and 10 kpc. We caution that
interpretation RS09/5 has a steep slope profile and that for this particular interpretation
the slope change is much more significant ∆γ ∼ 0.7.

Thus, we see that the various mergers between galaxies not only change the slopes of
the total matter density profiles but also those of the dark matter profiles. We show that
even when baryons account for just one percent of the total mass of a galaxy, in agreement
with recent abundance matching results, their effect is still significant enough to have an
impact on the scales probed by observations, making initial cusps shallower. In the new
interpretations, the changes in the slope are more localised to the inner regions (5−10 kpc)
of the galaxy when compared to results from the original RS09 simulations where the slope
was shallower than γ = 1 out to ∼ 30 kpc for model B.

Aspects of this evolution are present in the explanation proposed by El-Zant et al.
(2004) for the shallow slopes measured by Sand et al. (2004): dynamical friction as the
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Figure 4.4: Slopes of the total matter and dark matter profiles at z = 3 and z = 0 for
the four interpretations and for the original RS09 simulations. The top and bottom panels
show results for models A and B respectively. The dashed red line is the slope of the
dark matter profile in the original RS09 simulations (prior to rescaling). The horizontal
dashed black line γ = 1 marks the asymptotic limit for a NFW cusp. The arrows mark
the resolution limit 3ǫ = 4.1 kpc. The lower coloured arrows mark the half-light radii for
the different representations.
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galaxies orbit in the cluster heats up the central dark matter and makes cusps shallower.
A limitation of this work was the use of massive particles to represent galaxies which can
not capture other processes such as mixing and stripping of stars and dark matter. Their
shallow cusp was produced by evacuating the central dark matter and replacing it with
massive point-like galaxies. The relative distribution of stars and dark matter was thus
not followed realistically.

In our numerical experiment, the galaxies are represented by many particles giving them
a gravitationally self-consistent phase-space distribution. The numbers of mergers and of
galaxies falling to the centre of the cluster are given by the simulation. Using the fact that
the galaxies are set up initially to be spherically symmetric and in a steady state, it follows
from Jeans’ theorem and Eddington’s formula that we can construct different equilibrium
stellar density distributions out of the total mass distribution of particles. Our simulations
show that differences in the weakening of cusps from one interpretation to another are due
to differences in the mixing between stars and dark matter. Within the ΛCDM context, the
many collisionless mergers experienced by the BCG produce a weakening of dark matter
cusps.

This is a qualitative result and certain aspects of the matter distributions in our sim-
ulations remain unrealistic. As a result we do not attempt to reproduce observations of
Abell 383 (e.g. the velocity dispersion and luminosity profiles in N11). Even with a fully
realistic simulation such a goal would likely be unattainable, given that we have only one
realisation of a cluster at our disposition. BCG formation and evolution is tightly coupled
to that of the cluster as a whole, so BCGs have a variety of profiles.

In reality the situation is more complicated, galaxies do not form only through col-
lisionless mergers. Disspational processes certainly play an important role in shaping
galaxies at earlier times. Baryons dominate the visible regions of the progenitor galaxies
and can alter the initial distribution of dark matter in numerous ways: through gas ex-
pulsion (Navarro et al., 1996), supernova driven impulsive heating (Pontzen & Governato,
2012), AGN feedback (Duffy et al., 2010) or adiabatic contraction (Blumenthal et al., 1986;
Gnedin et al., 2004, 2011).

4.5 Conclusions

We have studied the formation of a 1015M⊙ cluster in a ΛCDM Universe, following the
evolution of galaxies through collisionless mergers from z = 3 down to z = 0. We showed
that as a result of mixing between stars and dark matter in dissipationless mergers, initial
cusps (0.8 < γ < 1.3) can be substantially weakened (0.3 < γ < 0.9) at the inner-most
resolved radii. Our results indicate that observations of shallow dark matter cusps at the
centre of clusters are not necessarily inconsistent with CDM. We find changes of dark
matter profile slope at a fixed radius of the order 0.3 < ∆γ < 0.5.

Another interesting result from this study is that the evolution in size is stronger
than in mass for more compact stellar distributions. We find that the trend moves from
re ∝M for extended galaxies to re ∝ M2 for more compact ones. The latter evolutionary
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trend has in fact been found in a recent observational study by van Dokkum et al. (2010).
Our numerical experiments have some serious limitations that we hope to improve on in
future work. It would be interesting to use initial conditions based on the observed z = 2
mass-size relation for galaxies combined with stellar to dark matter ratios consistent with
abundance matching arguments in order to study the build-up of BCGs and the fate of
the most compact ellipticals in ΛCDM more reliably. This would allow us to check semi-
analytic descriptions of the process in the ΛCDM context such as that of Shankar et al.
(2011). This will be the subject of the next Chapter.
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Chapter 5

The Growth in Size and Mass of
Cluster Galaxies

We study the formation and evolution of Brightest Cluster Galaxies starting from a z = 2
population of quiescent ellipticals and following them to z = 0. To this end, we use a
suite of nine high-resolution dark matter-only simulations of galaxy clusters in a ΛCDM
universe. We develop a scheme in which simulation particles are weighted to generate
realistic and dynamically stable stellar density profiles at z = 2. Our initial conditions
assign a stellar mass to every identified dark halo as expected from abundance matching;
assuming there exists a one-to-one relation between the visible properties of galaxies and
their host haloes. We set the sizes of the luminous components according to the observed
relations for z ∼ 2 massive quiescent galaxies. We study the evolution of the mass-size
relation, the fate of satellite galaxies and the mass aggregation of the cluster central. From
z = 2, these galaxies grow on average in size by a factor 5 to 10 of and in galaxy mass
by 2 to 3. The stellar mass of our simulated BCGs grow by a factor of ∼ 2.1 in the
range 0.3 < z < 1.0, consistent with observations, and by a factor of ∼ 1.4 in the range
0.0 < z < 0.3. Furthermore the non-central galaxies evolve on to the present-day mass-size
relation by z = 0. Assuming passively evolving stellar populations, we present surface
brightness profiles for our cluster centrals which resemble those observed for the cDs in
similar mass clusters both at z = 0 and at z = 1. This demonstrates that the ΛCDM
cosmology does indeed predict minor and major mergers to occur in galaxy clusters with
the frequency and mass ratio distribution required to explain the observed growth in size of
passive galaxies since z = 2. Our experiment shows that Brightest Cluster Galaxies could,
in principle, form through dissipationless mergers of quiescent massive z = 2 galaxies,
without substantial additional star formation.

5.1 Introduction

Brightest cluster galaxies (BCGs) form the massive end of the galaxy population. Except
in strong cooling flows, they are generally associated with old stellar populations, little star
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formation and large sizes (von der Linden et al., 2007; Bernardi, 2009). In some clusters,
BCGs are surrounded by a diffuse envelope of intracluster light. This additional light has
been measured in a number of nearby clusters (Gonzalez et al., 2005) as well as in stacks
of BCGs from the Sloan Digital Sky Survey (Zibetti et al., 2005). There have been claims
(e.g. Collins et al., 2009; Stott et al., 2011) that the observed evolution of BCGs disagrees
with the predictions of the semi-analytic galaxy formation models of De Lucia & Blaizot
(2007). These studies selected BCGs in high redshift clusters and compared them to the
central galaxies of present-day clusters of the same X-ray luminosity, observing little change
in the sizes and stellar masses. However, recent results from Lidman et al. (2012) seem to
indicate less tension between the models and observations in the evolution of stellar mass
(see also Tonini et al. (2012)). It is important to note that current semi-analytic models of
galaxy formation do not predict surface brightness profiles in a realistic manner. Thus, any
direct comparison of sizes in the models and in real galaxies should be made with caution.

Observations of z = 2 galaxies by Daddi et al. (2005) and Trujillo et al. (2007) revealed
the presence of a population of massive quiescent galaxies with much smaller sizes than
similar mass present-day ellipticals. This result has been confirmed by several other groups
(van Dokkum et al., 2008; Newman et al., 2012). Minor mergers (Bezanson et al., 2009;
Naab et al., 2009) have been proposed as the main mechanism driving the recent size
evolution of elliptical galaxies. Currently, it is unclear whether all such galaxies will grow
into present-day ellipticals. Bernardi (2009) proposed that some of these objects might be
progenitors of today’s BCGs.

White (1976) and Ostriker & Hausman (1977) introduced galactic cannibalism as a
possible mechanism to explain the formation of cD galaxies: a central galaxy gradually
swallows its companions as dynamical friction brings them to the cluster centre. These
deposit their stellar material primarily on the outskirts of the larger galaxy, helping it grow
in size and mass. This phenomenon seems to fit well within the ΛCDM cosmogony where
structure grows hierarchically. For example, semi-analytic models of galaxy formation find
that BCGs form in a two-phase process: an initial collapse with rapid cooling and star for-
mation at high redshift is followed by later growth through multiple dissipationless mergers
of pre-existing progenitors (Khochfar & Silk, 2006; De Lucia & Blaizot, 2007). A similar
two-phase formation mechanism is also reported in hydrodynamical simulations of massive
elliptical formation (Naab et al., 2009; Oser et al., 2010; Feldmann et al., 2011). Notably,
Oser et al. (2012b) show that compact massive ellipticals can grow onto the present-day
mass-size relation through minor mergers. However, such simulations still produce galaxies
that are too massive for the host haloes they inhabit so their quantitative applicability is
in some doubt.

Dubinski (1998) studied whether BCGs could form out of a population of spirals be-
tween redshift z = 3 and z = 0. His cosmologically motivated simulation showed that
BCGs could potentially form through repeated dissipationless mergers of galaxies. This
inspired later studies testing the collisionless merger hypothesis within cosmological sim-
ulations which provided new insights into the evolution of BCGs (Ruszkowski & Springel,
2009) and into the origin of the intracluster light (Rudick et al., 2006). A persistent issue,
however, is that the structure of the initial galaxies they assumed is inconsistent with recent
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observations of high redshift galaxies. In Chapter 4, we showed that re-scaling the luminous
components of the galaxies to bring them into better agreement with these observations
changed the size growth of BCGs from r ∝ M to r ∝ M2, consistent with observational
studies of massive quiescent galaxies at fixed number density (van Dokkum et al., 2010;
Patel et al., 2013)

Here, we present a scheme which can weight particles in a high-resolution cosmological
simulation of cluster formation to represent realistic stellar density profiles for the initial
galaxies. Using this method we can assign to every halo of mass M at a certain redshift
zi, a stellar mass m∗ according to an appropriate abundance matching relation, hereafter
AMR (Kravtsov et al., 2004; Vale & Ostriker, 2004; Moster et al., 2010; Guo et al., 2010;
Behroozi et al., 2010, 2013; Moster et al., 2013). This ensures a faithful representation of
the high redshift luminosity function at z = 2. We can then study the evolution of cluster
galaxies from a population of galaxies consistent both with the luminosity function and
with the mass-size relation observed at z = 2. We aim to test the dissipationless merger
hypothesis (White, 1976; Ostriker & Hausman, 1977; Dubinski, 1998). The questions we
want to address are the following: are BCGs special or simply the product of merging
of normal cluster galaxies? Does star formation contribute substantially to the growth in
mass of BCGs between z = 2 and z = 0? Do mergers explain why BCGs seem to lie off the
present-day mass-size relation? Could BCGs have evolved from the observed high-redshift
population of massive quiescent galaxies?

Section 2 presents the simulations we use and our method of generating stellar den-
sity profiles. In section 3, we study the properties of the BCGs and compare them with
observations. In section 4 we study the evolution of BCGs and how it compares to the
population of cluster ellipticals. We discuss the significance of our results in section 5 and
conclude in section 6.

5.2 Methods

5.2.1 Simulations

We use a set of nine dark-matter-only zoom-in simulations of galaxy clusters from the
Phoenix project (Gao et al., 2012). These are named Ph-A to Ph-I. The haloes were
initially selected from the Millennium Simulation (Springel et al., 2005) and re-simulated
with comoving softening length ǫ = 0.3h−1 kpc and mass resolutionmp ∼ 4−10×106h−1M⊙.
Details of the simulations are given in Gao et al. (2012). The subhaloes were identified
with the structure finder Subfind (Springel et al., 2001). We also compute the potential
of every particle in each subhalo at redshift z = 2. For the rest of the discussion, our
units are kpc and M⊙ for length and mass respectively. This assumes the cosmology of the
Millennium simulation: Ωm = 0.25, ΩΛ = 0.75, σ8 = 0.9 and n = 1.
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5.2.2 A Weighting scheme for cosmological dark matter simula-
tions

The weighting scheme presented here generalises that of Bullock & Johnston (2005) for
direct use in cosmological dark matter simulations of structure formation. Cold dark matter
(just like stars in a galaxy) is collisionless and its distribution function (df) satistfies the
collisionless Boltzmann equation (CBE). Provided that the df of the dark matter in a halo
is in a steady state, Jeans’ theorem guarantees the existence of a distribution function of
the form f = f(I1, I2, I3), where I1,2,3 are isolating integrals of the motion. In a triaxial
potential a df of the form f = f(H), where H = 1

2
v2 + Φ is the Hamiltonian, can always

be generated. Generally, dark haloes are not in a steady state; their lives are continuously
shaped by accretion events such as mergers and infall. However, in their study of the
evolution of the df of CDM haloes, Natarajan et al. (1997) showed that between merger
events haloes are in phases of “quasi-equilibrium” within the virialised regions. Thus,
provided we restrict ourselves to the virialised regions, Jeans’ theorem can be invoked to
generate a stellar df of the form f∗ = f∗(E).

In order to generate a luminous tracer stellar profile, we take each simulation particle of
energy E to simultaneously represent dark matter and stars in diferent amounts. through
a weight function ω(E) = N∗(E)

N(E)
= f∗(E)g(E)

N(E)
, where N is the differential energy distribution,

g is the density of states and asterisks denote stellar quantities.
We choose the stellar number density to be represented by the Hernquist (1990) profile:

ν =
a

r (r + a)3
, (5.1)

where a is the scale radius which is related to the 3D half-mass radius through a = re/(
√
2+

1). The half-mass radius in projection is related to re through Re = 1.33re
We generate f∗, using Eddington’s formula:

f∗(E) =
1√
8π2

∫ E

0

dΨ√
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dΨ2
+

1√
E
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∣

∣

∣

∣

Ψ=0

, (5.2)

where Ψ = −Φ + Φ0 and E = −E + Φ0 = Ψ − v2/2 are the relative potential and total
energies respectively. The potential of an NFW profile is generally a reasonable description
of the true potential and tends to zero in the limit r goes to infinity thus we set Φ0 = 0.

The density of states is given by:

g(E) = (4π)2
∫ rE

0

r2
√

2(E − Φ(r))dr. (5.3)

Equations (2) and (3) are only valid for spherical systems, however provided an educated
guess, they can also be applied to triaxial ones. Indeed, authors in the past have already
used the same formalism to study the distribution function of dark haloes (Natarajan et al.,
1997). To compute the d2ν

dΦ2 term in Eddington’s formula, we have to relate Φ to ν mono-
tonically as Φ(r) is multivalued in a triaxial potential. For this, we simply approximate
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Figure 5.1: Example ρ∗r
2 profile for a typical compact stellar profile generated using our

weighting scheme (black solid line) along with the stellar target profile (red dashed line).
The dip is due to low particle numbers in the region below 1 kpc. Arrows mark the radii
containing 50 and 95 percent of the simulated stellar mass profile.

Φ(r) =< Φ(r) >. However, in the definition of the energy, we retain the actual value of
the potential associated with every particle. This ensures the generation of a profile with
equidensity surfaces which correctly follow the potential.

Figure 1 illustrates the kind of profile one can generate within the z = 2 haloes of the
Phoenix simulation given a target input profile (red dashed line). We have checked for
the stability of our method by evolving a live dark halo for 150 Myr and saw no change
in structure. This was done by keeping the weights of individual particles constant as the
N-body simulation evolves them forward in time. We further looked for isolated galaxies
in haloes which have not experienced any stellar mass growth between z = 2 and z = 0.
We present such an example in the top panel of Figure 2. This halo has grown in dark
matter mass by a factor of two but its stellar mass profile has changed very little over
10 Gyr, although the half-light radius (defined as the radius of a sphere containing half
the total stellar mass) has increased by 30 percent. This is not a substantial problem for
studying the evolution of BCGs, where the change in radius is much larger and is primarily
caused by material deposited on the outside of the galaxy (see below and also Chapter 4).
Nevertheless it warns us that our experiment is close to the resolution limit for studying
the size growth of galaxies which do not accrete much stellar mass. Considering the large
period of time over which this test was carried out, we infer that two-body relaxation
processes are not the driving force behind the size growth we observe below for the most
massive galaxies. The bottom panel of Fig. 2 shows the evolution of a BCG which has
grown in mass by m∗f /m∗i = 4 and in size by rf/ri = 9, where the subscripts i and f
designate the initial and final times.

5.2.3 Initial Conditions

For our initial conditions, we choose to represent a population of galaxies consistent with
the observed stellar mass function at z = 2, which we relate to ΛCDM haloes in the
simulations through recent AMR results (Moster et al., 2010) which are consistent with
results from Moster et al. (2013) even at z = 2. We do not include the scatter in these
relations, as the scatter for the mass-size relation is already large. We further require that
the sizes of our model galaxies are consistent with those observed for massive quiescent
galaxies at z = 2. For our purposes, we choose the mass-size relation as parametrised by
Williams et al. (2010) and note that it is very similar to that of Newman et al. (2012) (see
the 3rd panel of their Figure 8).

At z = 2, a few haloes are undergoing mergers, but because these are a small fraction
of the total, we normally ignore them. However, if a particularly massive halo hosting a
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Figure 5.2: Top:ρ∗r
2 profile for a galaxy which has evolved from z = 2 (dashed line) to

z = 0 (solid line) without experiencing mergers or interactions with other haloes populated
with stars. The host dark matter halo has grown in mass (Msubf/Msubi) by a factor of 2.
This does not, however, translate in significant size growth (rf/ri) of the stellar component.
The arrows mark the radii enclosing 50 percent of the mass of the galaxies. Bottom: ρ∗r

2

profiles for a BCG most massive progenitor (dashed black line), and final z = 0 BCG (red
line). We also show the distribution of the stars in the BCG most massive progenitor at
z = 0 (solid black line). The BCG grew by a factor of m∗f/m∗i = 4 in stellar mass and
rf/ri = 9.3 in size. The black and red arrows show the radii enclosing 50 percent of the
mass of the most massive BCG progenitor at z = 2 and BCG at z = 0 respectively. Clearly,
the size growth observed for these galaxies is not due to two-body relaxation processes.
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∼ 1011M⊙ galaxy is undergoing a merger we generate its stellar distribution function at
an earlier snapshot. Depending on the state of the halo it is sometimes hard to generate
stellar density profiles that perfectly match the original target, but as long as the galaxies
are within the scatter of the observational relation we consider this good enough. For the
rest of our discussion of the structural properties of ellipticals in clusters we will focus
on objects which have masses above 7 × 1010M⊙, which still leaves us with a sample of
156 galaxies at z = 2. We follow, the subsequent evolution of galaxies by keeping the
weights of individual particles fixed as the simulations evolve. Since our experiment tests
the collisionless merger evolution scenario, stars and dark matter particles with similar
orbits are expected to follow each other over time.

5.3 Structural Properties of BCGs

As a first test, it is interesting to check whether the total stellar mass of the final merger
remnant agrees with expectations from the BCG luminosity function at z = 0. Figure 3
shows the stellar-to-halo mass relation for the galaxies at z = 2 and for cluster centrals
and satellite galaxies at z = 0. As expected, many cluster galaxies have their dark matter
haloes stripped, moving them horizontally in the m∗ −Mhalo plane. Some of the cluster
galaxies have a stellar mass deficit which can be explained by the lack of star formation in
our experiment. These galaxies lie below the Moster et al. (2010) relation at z = 0. Some
cluster satellite galaxies however grow to stellar masses in agreement with the relation
at z = 0. Moreover, the final BCGs occupy a region that is in good agreement with
expectations of AMRs at z = 0. This success depends on the assumption we made about
the progenitor galaxies at redshift z = 2 and on the hierarchical growth of the clusters
according to the ΛCDM paradigm. At face value, this strongly supports the hypothesis
that BCGs form from dissipationless mergers of galaxies that were already in place at
z = 2. This is in line with the galactic cannibalism picture originally formulated by
White (1976) and Ostriker & Hausman (1977): BCGs predominantly grow through the
later merging of already existing galaxies. This idea agrees with the more recent studiy
of De Lucia & Blaizot (2007) who find using their semi-analytic model that 80 percent of
the stars ending up in BCGs are already formed at z = 3. With this in mind, we now
ask whether any of the structural properties of our BCGs closely resemble those of known
cluster central galaxies.

5.3.1 Surface Brightness and Density Profiles

Recent studies of massive quiescent galaxies at z = 2, (Williams et al., 2010; van Dokkum et al.,
2008) adopt a Kroupa IMF and solar metallicity when interpreting their photometric data
and find a stellar population age of 1 Gyr for the bulk of the population. We adopt
these same parameters for all of our galaxies. Our experiment assumes that the stellar
populations evolve passively (the collisionless merger hypothesis), so we determine the
mass-to-light ratios at later times using the values computed by Maraston (2005). We
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Figure 5.3: Stellar-to-halo mass relations at z=2 and z=0 (black and red lines respectively).
The black stars represent the most massive progenitors of BCGs at z=2 and the small
black squares represent all the haloes populated with stars in the initial conditions. The
red triangles are the BCGs at z=0 and the red crosses represent cluster satellite galaxies.
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Figure 5.4: Surface brightness profiles for BCGs at z = 0 derived assuming passive evolu-
tion between z = 2 and z = 0. Overplotted in red are surface brightness profiles for nearby
galaxy clusters from Gonzalez (2005). The simulated surface brightness profiles have a
sligthly steeper fall-off at large radii compared to the observed ones but can be accounted
for including intra-cluster light.
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note that Newman et al. (2012) use Salpeter IMFs to derive their stellar masses, however
due to the large scatter in the mass-size relation this is a minor issue. In fact, the two
sets of data agree at z = 2. Stellar mass-to-light ratios are assumed fixed as a function of
radius. We have not tried varying ages or metallicity with host mass as there are currently
no observational constraints on variations in stellar metallicity or age at such redshift.

In Figure 4, we present surface brightness profiles for BCGs at z = 0. This is done
by taking 50 random projections of the individual galaxies. Surface brightness profiles
taken from Gonzalez et al. (2005) are overlaid in red. These authors measured the surface
brightness profiles of 24 nearby BCGs in the I-band. The clusters they used were in the
redshift range 0.03 < z < 0.1. We find a reasonable match between the observed and
simulated light distributions both in shape and in normalisation. However, we still note
that at large radii our simulated galaxies have systematically slightly steeper fall-offs in
their surface brightness profile.

Some authors have claimed that BCGs are already well in place at high redshift, z =
1.0, and that they evolve little thereafter (Collins et al., 2009; Stott et al., 2011). We
compare the surface brightness profiles of some of our relaxed cluster BCGs to those of
compiled by Stott et al. (2011) at z = 1.0 in Figure 5. These authors deduced a stellar
population formation age at z = 3, similar to that is found for quiescent z = 2 galaxies.
The observations were performed in the HST F850LP band, but we compute our surface
brightness profiles assuming a mass-to-light ratios in the SDSS z band which matches
closely the F850LP band. We add the (1 + z)4 surface dimming correction for direct
comparison with their data. Given the uncertainties in the IMF and the different band
zero-point, the agreement between the two is still reasonable and encouraging.

We also present the evolution in density profiles from z = 2 to z = 0 in Figure 6,
separating the components into in-situ and accreted components. As previous studies have
shown the size evolution is predominantly driven by adding stellar mass to the outskirts of
the galaxies (Naab et al., 2009; Oser et al., 2012b; Laporte et al., 2012; Hilz et al., 2012).

5.4 Evolution of BCGs and Ellipticals in Clusters

Recently, Lidman et al. (2012, hereafter L12), presented new results on the evolution of
the stellar mass in BCGs using samples of high, intermediate and low redshift clusters.
We compare their data with ours in Figure 7, looking at cluster mass versus BCG stellar
mass at three different redshifts. Our BCGs lie within the scatter of their data, although
generally towards the massive end in stellar mass. However, we show this is also partly due
to the way L12 derive their stellar masses. For some of our BCGs, we used de Vaucouleurs
profile fits within an aperture of 30 kpc to derive stellar masses. For high Sersic indices
(e.g. n = 8) up to half of the total stellar mass of the BCG can be missed. We indicate
the shifts such systematics can cause for a few of our galaxies in Figure 7, showing that
this might bring them in better agreement with the data. On the whole, L12 observe a
stellar mass growth rate of 1.8 between 0.2 < z < 0.9 for their sample. This is consistent
with that found for our simulated galaxies: we observe a stellar mass increase of factors of
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Figure 5.5: Simulated surface brightness profiles in the SDSS z-band for BCGs at z = 1
against projected radius. Overplotted in red are the observed surface brightness profiles in
the F850LP HST band of for clusters of similar mass taken from the sample of Stott et al.
(2011)
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Figure 5.6: Density profiles of BCGs for the nine cluster simulations. We separate in-
situ components at z = 2 (for the most massive progenitor) and z = 0 (green and blue
respectively) and accreted component at z = 0 (magenta), the final BCG density profile
is shown in black. Note that haloes B, H, I are unrelaxed at z=0 making their analysis
cumbersome.



5.4 Evolution of BCGs and Ellipticals in Clusters 61

2.1, 1.4 and 2.6 over 0.3 < z < 1.0, 0.0 < z < 0.3, and 0 < z < 1 respectively. The stellar
mass growth since z < 1 reported here is consistent with results from De Lucia & Blaizot
(2007) and Tonini et al. (2012)

We now turn to a comparison of the evolution in mass and size of the BCGs and that
of the general cluster population of ellipticals. We proceed by identifying all the z = 2
haloes which end up in the final clusters at z = 0 (defined as the major FOF group)
and track them over redshift using trees constructed from the subfind data at ∼ 50
intermediate outputs using individual particle IDs to match subhaloes in neighbouring
outputs. As in Ruszkowski & Springel (2009), we compute three-dimensional spherical
stellar mass profiles using logarithmic bins of widths ∆ = 0.1 and measure their 3D half-
mass radii. This is shown in Figure 8. We visually inspected the individual density profiles
of cluster galaxies checking their Hernquist profile fits given the parameters determined in
the previous step, namely M and a. However, for BCGs, as their profile can sometimes be
more extended (with Sersic profiles reaching n = 8−10) than a simple de Vaucouleurs law,
these fits were often poor. Furthermore, we note that some clusters are out of equilibrium
at various times which complicates the analysis of the central galaxy, this is the case for
Ph-A-B-H-I at z = 1 and for the Ph-B-I clusters at z = 0.

Comparing panels, we see that BCGs evolve more rapidly than other galaxies and that
different BCGs evolve at different rates. While some of the BCGs experience rapid growth
in stellar mass by z = 1 (e.g. Ph-H), others see most evolution between z = 0.3 and z = 0
(e.g. Ph-B, Ph-G). There are also BCGs that show almost no significant evolution in stellar
mass or size between z = 0.3 and z = 0 (e.g. Ph-A, Ph-E). Furthermore, some BCGs still
suffer many mergers between z = 0.3 and z = 0, this is the case for Ph-I, which doubles
in stellar mass. Such late phases of merging are observed (Liu et al., 2009; Brough et al.,
2011). We also see a growing mass gap between BCGs and other cluster ellipticals as we
get closer to z = 0.

Our result confirms that of Ruszkowski & Springel (2009): BCGs tend to move off the
mass-size relation of local ellipticals because of their much higher merger rate. Whether
all BCGs should lie off the normal relation is harder to ascertain with a sample of only
nine galaxy clusters. We find that at z = 0, our cluster-ellipticals and some our BCGs
lie on the mass-size relation derived by Hyde & Bernardi (2009). For comparison we also
show in Figure 7 the Shen et al. (2003) relation which is shallower, a consequence of using
Petrosian-based quantities which introduces a bias for objects of large Sersic index.

It is interesting to also look at the amount of mass deposited through mergers and
disruption of satellites. We define a merger event with the BCG when half of the stellar
mass of a progenitor galaxy gets incorporated within the first subhalo of the FOF group
(defined as the halo inhabited by the BCG). Anything below this threshold we called
“diffuse” stellar accretion from stripped satellites. We list in Table 1 the amount by
which each type contributes to the mass aggregation for each BCGs. This table shows
that for the various BCGs not all the mass accretion came from mergers but also some
from stripped galaxies or galaxies in the process of merging. This amount of diffuse mass
deposition, defined in Table 1 as the percentage of the final BCG mass diffusely accreted
(i.e. fdiffuse = (macc−mmerger)/(m0+macc), where m0 is the mass of the in-situ component
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Figure 5.7: Cluster mass against BCG stellar mass at different redshifts. Top: High-z
BCG sample (0.8 < z < 1.5) and the Phoenix BCGs at z = 1.0 (coloured stars). Middle:

Intermediate-z L12 BCGs (0.2 < z < 0.5) and Phoenix BCGs at z = 0.3. Bottom: Low-z
(z < 0.2) L12 BCGs and Phoenix BCGs. At z = 0, we show for some BCGs the stellar
mass predicted by fitting a de Vaucouleurs profile within a 30 kpc aperture. For large
indices (n=8 or n=10) this can lead to an underestimate of the true stellar mass of up to
a factor of two. Models and observations are consistent at all z given the large scatter in
the observations.
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Run m0 macc mmerger fdiffuse M200

1011M⊙ 1011M⊙ 1011M⊙ 1014M⊙

Ph-A-2 3.9 7.8 7.2 0.05 8.9
Ph-B-2 4.1 5.9 4.4 0.15 11.3
Ph-C-2 2.8 6.8 6.0 0.08 7.5
Ph-D-2 2.0 4.4 2.1 0.07 8.5
Ph-E-2 2.8 7.3 6.8 0.30 8.2
Ph-F-2 4.1 5.2 3.2 0.20 10.9
Ph-G-2 2.2 5.7 2.9 0.32 15.8
Ph-H-2 1.8 6.6 4.4 0.3 15.6
Ph-I-2 5.8 17.6 11.2 0.3 33.0

Table 5.1: Initial mass of the most massive BCG progenitor, stellar mass accreted over
the last 10 Gyr, stellar mass contributed by mergers, the fraction of the final stellar mass
contributed by the disruption of satellites (not defined as mergers) and final cluster mass.
Note that we define a merger to occur when more than 50 percent of the stellar mass of a
galaxy goes into the final BCG.

of the most massive BCG progenitor), can vary between five percent (Ph-C) and thirty
percent (Ph-G and Ph-H) of the total accreted stellar mass. Furthermore, these values of
accreted stellar mass are in agreement with the trends found in Moster et al. (2013). We
also present the number of mergers each BCGs experienced through their lifetime and list
their ratios in Table 2. Although our definition of merger is somewhat arbitrary it clearly
shows that BCGs go through a succession of major (1:1 - 1:2) and minor merging events (1:3
- 1:10) both of which are observed in real BCGs (e.g. Liu et al., 2009; Edwards & Patton,
2012). Furthermore, we see that the clusters for which we have identified fewer mergers
also have a higher fraction of diffuse stellar accretion through stripped satellites: this is the
case for clusters Ph-F, Ph-G and Ph-H. Although, there is a mixture of types of mergers,
in the cases where minor merging has been predominant (Ph-B, Ph-C, Ph-D, Ph-F, Ph-
I), the numbers and ratios are in agreement with those which the ad hoc simulations of
Hilz et al. (2013) found necessary to make the sizes of compact high-z ellipticals grow to
those of present-day ones.

5.5 Discussion

We now turn to compare our work with previous simulation studies of BCGs. Recently,
Martizzi et al. (2012) presented hydrodynamical simulations of BCGs in which the central
galaxy was brought to agree with the local AMRs through the inclusion of AGN feedback.
However, the surface brightness profile of the final galaxy contains a stellar core of 10
kpc. Such large stellar cores are clearly absent in real BCGs (Lauer et al., 2007). The
largest core size measured in a BCG is of ∼ 3kpc (Postman et al., 2012). This suggests
that the AGN feedback mechanisms implemented in these simulations are too strong.
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Figure 5.8: Mass-size evolution for cluster galaxies. Note that we use a 3D definition of
half-mass radius for our simulated galaxies and we compare these to de-projected half-mass
radii for observations. Black dots represent simulated ellipticals, stars depict the z = 0
BCGs and their most massive progenitors in the higher redshift panels. Top left: z = 2
initial conditions overlaid with data from Newman et al. 2012 (N12) in blue diamonds, van
Dokkum et al. (2008) in red triangles and the relation fromWilliams et al. 2010. Top right:
z = 1.0 mass size relation with data from N12 in the redshift range 1.5 < z < 1.0. Bottom
left: z = 0.3 mass-size relation with data from N12 in the redshift range 0.4 < z < 1.0.
Bottom right: z = 0 mass-size relation overlaid with the mass-size relations of Hyde &
Bernardi (2009) and Shen et al. (2003)
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Run 1:1-2 1:3-5 1:10-100
Ph-A-2 2 1 6
Ph-B-2 0 4 3
Ph-C-2 1 4 5
Ph-D-2 1 2 2
Ph-E-2 2 1 4
Ph-F-2 1 0 3
Ph-G-2 1 2 8
Ph-H-2 2 3 2
Ph-I-2 0 6 8

Table 5.2: Table summarising the merger count for each BCG. Note that we define a
merger when more than 50 percent of the stellar mass of a galaxy goes into the BCG.

While it seems that AGN feedback is the most promising way of suppressing over-cooling
and star formation at the centre of clusters (Croton et al., 2006; Sijacki & Springel, 2006;
Puchwein et al., 2010), its impact on the structure of the existing stellar population in
the cluster central galaxy is probably negligible because too little gas is present in the
star-dominated regions. Our work shows that dissipationless mergers of galaxies between
z = 2 and z = 0 can produce BCGs with properties closely resembling those seen in the
local Universe (surface brightness profiles, stellar-to-dark matter ratios).

Turning to the evolution of our, by definition, “quiescent” galaxies, we observe an evo-
lutionary trend close to those found in observations (e.g. Newman et al. (2012)). However
we caution that perhaps our experiment is over-idealised for such a direct comparison to
observations. Indeed, the z = 2 galaxy population is diverse, containing extended star-
forming galaxies as well as quiescent galaxies (e.g. Figure 2 in Szomoru et al. (2012)). In
this paper we have assumed that all haloes at z = 2 contain compact quiescent galaxies.
On the other hand, we can affirm that BCGs could well be descendants of quiescent mas-
sive ellipticals at z = 2. The best evidence for this in our experiment is that our simulated
galaxies started on the same mass-size relation as the bulk of galaxies, yet mergers turn
them into present-day systems which closely match the surface brightness profiles of known
BCGs.

One limitation of our experiment is that we omit the effect of the baryons on the total
potential of galaxies at z = 2. We have considered the potentials of halos in the dark-
matter only simulations to represent those of z = 2 galaxies. Including the self-gravity of
the stars would in principle deepen the galactic potential wells, making tidal stripping of
the inner-regions of haloes less efficient. However, the inclusion or omission of contraction
of the dark matter haloes due to the presence of a stellar component in these simulations
appears to make relatively little difference to the final results on the evolution of the BCG
as seen in Chapter 4 or Ruszkowski & Springel (2009). Once more information is available
on the internal structure of galaxies at z = 2, it will be necessary to consider more complex
modelling, including the stars explicitly.
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5.6 Conclusions

We have studied the late formation and assembly of BCGs in the ΛCDM cosmology start-
ing from a z = 2 population of “quiescent” galaxies resembling those observed. We did so
by representing the stellar components of galaxies inside their dark matter haloes through
a particle weighting scheme. In contrast with previous studies, our experiment simulta-

neously represents the luminosity function at z = 2 as derived from abundance matching
relations and the observed mass-size relation at z = 2. Previous N-body studies asssumed
substantially too much stellar mass for a given halo mass (Ruszkowski & Springel, 2009;
Rudick et al., 2011), thus adopting initial conditions inconsistent with modern observations
and a ΛCDM cosmology.

Under the assumptions of our experiment, we predict present-day BCGs with stellar
masses in good agreement with those inferred from the z = 0 stellar-to-halo mass relation.
Moreover, the surface brightness profiles of our simulated BCGs match observations of local
BCGs both in shape and in normalisation. This suggests that most BCGs have evolved
passively from z = 2 to z = 0, forming out of a pre-existing population of compact galaxies
with very little star formation after z = 2.

The large masses and sizes of BCGs reflect the hierarchical growth of structure in ΛCDM
and their special location at the centres of galaxy clusters. Our experiment also reproduces
surface brightness profiles of some of the five z ∼ 1 BCGs in Stott et al. (2011) suggesting
that these do not conflict with ΛCDM expectations. In fact, we show that our results
agree well with the recent study of Lidman et al. (2012). Our simulated galaxies suggest
that estimates based on fluxes within 30 kpc apertures may in some cases substantially
underestimate the stellar masses of BCGs.

The Phoenix project offers an important window to study various aspects of cluster
dynamics and the evolution of galaxies and the gravitational wave signal from merging
black-holes (McWilliams et al., 2012). Our presented scheme could be used in the future
with the aim to address questions about colour and metallicity structure in BCGs.



Chapter 6

The re-distribution of matter in
galaxy clusters

We present cosmological N-body simulations to study the dynamics of mixing between
stars and dark matter at the centre of galaxy clusters. We simulate the late time assembly
of galaxy clusters from z = 2 to the present day by populating dark matter haloes with self-
consistent stellar components satisfying observational constraints (mass-size and stellar-to-
halo mass relations) at z = 2. The central regions of galaxy clusters get re-shaped through
multiple mergers. These give rise to dark matter density profiles shallower than their
dark matter-only run counterparts, reaching values of γ = −d lnρ

d ln r
in agreement with recent

measurements for galaxy clusters. The radius of transition to dark matter slopes shallower
than γ = −d lnρ

d ln r
= 1.0 occurs at a scale of r/r200 ∼ 0.1 − 0.2 similar to observations. The

total dark matter density profiles remain identical to the dark matter only runs except
below a scale of r/r200 ∼ 0.002−0.003 where the stars dominate. The line-of-sight velocity
dispersion profiles for the stars are also consistent with those measured for similar mass
clusters. Thus the recent observations of galaxy clusters following an almost universal
profile in their total density profile is not surprising and a reflection of the predominantly
dissipationless assembly. Our numerical experiment shows that dissipationless mergers do
not always bring dark matter fractions up at the centre of massive ellipticals but can also
decrease them. The reason for this is related to the large scatter in stellar central densities
at a given stellar mass which can lead to scenarios where denser galaxies can merge to the
centre of a more extended progenitor, thus decreasing the dark matter fractions by factors
as high as 2 within 1 − 2kpc. Based on the merger histories of the clusters, we further
estimate the effect of matter scouring (via dynamical friction) due to the presence of black
holes in the most massive galaxies. We find that mass deficits of up to Mdef ∼ 1011M⊙

are possible, providing a natural explanation for the existence of the largest stellar cores
of size rc ∼ 3 kpc observed in the Brightest Cluster Galaxies.
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6.1 Introduction

In the standard ΛCDM cosmological paradigm, dark matter is a collisionless particle and
its clustering can be followed by solving the collisionless Boltzmann equation (CBE). This
can be done through Monte-Carlo techniques such as the N-body method. In the last
decade, cosmological dark matter only simulation have shown that the spherically aver-
aged density profiles of dark matter haloes follow a universal form from clusters to dwarf
galaxy scales which may be parametrised by the Navarro, Frenk & White (1997, ’NFW’
hereafter) profile 1. This density profile is characterised by a falls off as ρ ∝ r−3 at large
radii and asymptotes to ρ ∝ r−1 as r → 0. The exact origin of this profile is still un-
clear and many arguments have been put forward from multiple mergers(Syer & White,
1998) or the maximisation of entropy subject to constraints like the constancy of actions
(Pontzen & Governato, 2013) but a convincing understanding of the emergence of such
profile is yet lacking. The problem is made difficult when comparing models to simulations
due to the inherent disjoint symmetries between spherical/axisymmetric models to triaxial
ones, making the true identification of the isolating integrals of the motion arduous in the
latter case (see for example Pontzen & Governato (2013)).

Observations of relaxed galaxy clusters on the other suggest that the dark matter den-
sity profiles are shallower than those found in simulations (Sand et al., 2002, 2004, 2008;
Newman et al., 2009, 2011, 013b). However, recent results from Newman et al. (013a) com-
bining simultaneously differerent mass measurement techniques ( stellar kinematic, strong
lensing, weak lensing and the X-ray emission from the hot electrong gas) point that the
total density profile of such clusters are consistent with the end result of dark matter only
collissionless simulations. This suggests that regardless of the galaxy formation physics, the
NFW profile may be a gravitational attractor. This idea was proposed by Loeb & Peebles
(2003) suggesting that such an attractor solution should arise in galaxies where the late as-
sembly is orchestrated by dissipationless mergers. Although baryon condensation into stars
would steepen the total density profile of progenitor galaxies, these authors postulated that
the later high number of disspationless mergers would create enough fluctuations in the
potential of the galaxies thus taking the new combined collisionless fluid back to the uni-
versal profile as observed in dark-matter only simulations. Gao et al. (2004) qualitatively
studied this by tracking the central dark matter particles in dark matter-only simulations
of galaxy clusters back to higher redshifts and saw that the inner-region of the dark matter
profile of galaxy clusters is indeed built up by the assembly of separate entities formed at
higher redshifts. They suggested that with the presence of starts efficient mixing would be
possible to give rise to an attractor solution. However, the experiment containing two col-
lisionless fluids (dark matter and stars) with initial conditions constrained by observations
of real galaxies has yet never been carried out explicitly to test this attractor hypothesis.

It is generally thought that dynamical friction which brings galaxies to the cluster centre
helps evacuating the central dark matter from the central region, depositing it to larger radii
El-Zant et al. (2004). However, Laporte et al. (2012) showed that the competition between

1It should be noted however that some scatter exists from halo to halo (Navarro et al., 2010)
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dynamical friction, stripping between stars and dark matter can vary the strength of this
process which also depends on the initial structure of high-redshift galaxies. These authors
showed that the later mixing of stars and dark matter through dissipationless mergers can
produce reduce the strenght of the dark matter cusp up to an amount ∆γ = 0.5 at the inner
most resolvable radius, however their initial conditions where not correctly representative
of the observations and results could only be interpreted qualitatively.

In this contribution, we test whether given the current observational information on
the structure of massive z = 2 galaxies, the later dissipationless mergers which occur at the
cluster centre are able to produce dark matter cusps as shallow as those of Newman et al.
(013b) and total density profiles consistent with (Newman et al., 013a). We run simula-
tions which take explicitly into account the baryonic stellar loading of dark matter haloes at
redshift z = 2 and follow the subsequent evolution of star and dark matter particles to the
present-day. To this end, we have developed a method for directly inserting self-consistent
luminous components of galaxies inside dark matter haloes formed in cosmological simula-
tions. Past simulations of this sort have generally replaced dark matter haloes (and all their
substructure) with spherical compound galaxy models made up of stars and dark matter
(Dubinski, 1998; Rudick et al., 2006). We take a dark-matter only zoom-in simulation at
z = 2 in which we insert directly stellar spheroids in equilibrium following constraints
from abundance matching results Moster et al. (2013) and mass-size relations of galaxies
at z = 2. The galaxies initially re-virialise as the dark matter particles are not aware of
the newly inserted stellar potentials on a timescale of four to five dynamical times. We
then study the mixing between stars and dark matter and the final resulting density profile
which we compare to dark-matter-only simulations. Section 2 introduces the simulations
and discusses our method for inserting N-body equilibrium model galaxies in cosmological
dark matter simulations as well as stability and resolution tests which were performed.
We study the final structural properties of the clusters in section 3. In section 4 we look
further into the mergers and mixing processes that occured in the central region of the
clusters. We discuss the further important role of black holes in section 5 and dicuss our
results and conclude in section 6 and 7 respectively.

6.2 Numerical methods

6.2.1 Simulations

We use a suite of zoom-in dark matter only simulations of galaxy clusters, the phoenix

project Gao et al. (2012) as our starting point for re-simulating the passive evolution of
galaxies from z = 2 to z = 0. The haloes in the phoenix suites were initially selected
from the Millennium Simulation (Springel et al., 2005) and re-simulated with comoving
softening length ǫ = 0.3h−1 kpc and mass resolution mp ∼ 4 − 10 × 106h−1M⊙. Details
of the simulations are given in Gao et al. (2012). This assumes the cosmology of the
Millennium simulation: Ωm = 0.25, ΩΛ = 0.75, σ8 = 0.9 and n = 1. For the rest of the
discussion, our spatial and mass units are in kpc and in M⊙ respectively. The subhaloes
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were identified with the structure finder Subfind (Springel et al., 2001). We generate
stellar equilibrium models of galaxies which we insert in the dark matter haloes of the
original phoenix simulations at z = 2 and re-simulate the later evolution of the stellar
and dark matter particles down to the present day. The star and dark matter particle
resolutions are kept fixed, except that the softening for the stars and dark matter is kept
fixed at a physical scale of 0.1 kpc corresponding to the physical softening that at z = 2.

6.2.2 Generating the stellar components and compound galaxies

The galaxies are represented by Hernquist (1990) spheres:

ρ∗ =
aM∗

r (r + a)3
, (6.1)

where a is the scale radius which is related to the 3D half-mass radius through a = re/(
√
2+

1). The half-mass radius in projection is related to re through Re = 1.33 re
The N-body models for the stellar distributions are generated through a Monte Carlo

sampling of a spherical distribution function (DF) of the form f ≡ f(E) using a Neumann
rejection technique (Kuijken & Dubinski, 1994; Kazantzidis et al., 2004). The DF takes
the form:
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, (6.2)

where Ψ = −Φ + Φ0 and E = −E + Φ0 = Ψ− v2/2 are the relative potential (containing
the contribution of both the dark matter and stars) and total energies respectively. The
potential of the dark matter halo is modelled as a Hernquist sphere through a χ2-fit to the
spherically average density profile. Because the total potential is modelled as the superpo-
sition of two Hernquist profiles, the constant term in equation 2 drops out. While there are
better ways to represent the potential of the dark matter haloes, we have found this approx-
imation to be robust enough to produce stable galaxies (as will be shown later). Moreover,
we note that it is often recommended to take into account of the Plummer softening when
generating N-body models from distribution function based methods. However, in the case
of the Hernquist profile, Barnes (2012) demonstrates that this does not make a difference
provided that the softening length is smaller than the scale radius of the galaxy and that
the inner-slope is not strongly cusped.

6.2.3 Stability Tests

We perform some stability tests to check whether our method works efficiently. We extract
a subhalo identified with the subtructure finder subfind Springel et al. (2001) from the
cosmological dark-matter-only run and insert a spheroid with mass and size according to
abundance matching and mass-size relations at z = 2. We then evolve the new system
in isolation with a softening length of ǫ = 0.1kpc for a period of 10 Gyr in Newtonian
space. Such a case is shown in Figure 1. The dark matter quickly contracts due to the
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sudden presence of the stellar component on a timescale of 200 Myr, however the stellar
component is more stable because of the inclusion of the host potential in initialising
the particle velocities. This is shown in Figure 2. We also observe a flattening of the
stellar components after revirialisation as shown in Figure 3. We have not attempted to
prevent the rapid contraction of the dark matter component. Considering the current
state of observations with respect to the properties of spheroids at z = 2 and the lack of
information about the structure of their dark matter haloes, we believe our representation
is adequate enough to study the evolution of the properties of our galaxies. Furthermore,
the initial contraction of the dark matter should give us already a lower limit to the effect
of dissipationless mergers. We anticipate that if the dark matter density profiles were kept
intact or made shallower this would result in stronger effects than what we will see here.

The following method improves on past attempts at replacing dark matter haloes in
cosmological runs with purely spherical systems. This is because the treatment between
the model galaxies’ boundaries with the rest of the cosmic web becomes ill-posed. In our
experiment, the spheroids are included directly into the simulation and settle quickly into
stable configurations after a few dynamical times, giving a more sophisticated treatment
of the ICs, preserving the original structure of every dark matter halo (in terms of their
subhalo population). It is because of the high-resolution achieved in dark matter only
simulations today that we are able to perform such runs which were not possible in earlier
studies (Dubinski, 1998; Rudick et al., 2006). Based on the series of tests performed for
different galaxy stellar masses, we are able to follow reliably the structural evolution of
galaxies with masses above 2×1010M⊙ without the effect of two-body relaxation mitigating
our results.

6.2.4 Initial conditions

Using the method described above, we populate every subhalo identified by subfind in
the original dark matter-only simulation susceptible to hold a minimum stellar mass of
m∗ = 2 × 109M·. In our initial conditions we choose to represent a galaxy populations
with structural properties that agree with numerous observational constraints. The stellar
mass associated with each dark matter halo is chosen such as to reproduce the M200 −m∗

results from the abundance matching of Moster et al. (2013). The size of a galaxy is set
to follow either the mass-size relation for red compact massive quiescent galaxies or that
of extended blue star forming galaxies. The distinction between red and blue galaxy is
made in a probabilitistic way using the observed fraction of quiescent z = 2 galaxies as
a function of stellar mass q ≡ q(m∗) from Muzzin et al. (2013) which extends down to
1010M⊙. Below a stellar mass of 1010M⊙ the sizes are selected according to the observed
scatter in the mass-size diagram of galaxies (which is substantial).This is shown in Figure
4.

Although we are representing all galaxies as spheroids, our experiment is still aimed
at addressing a well posed dynamics problem and the spread in sizes we have generated
already encapsulates already much of the complexity of galactic structure on the galaxy
population at z = 2. The galaxies are placed at the centre of the potential xpot of every dark
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Figure 6.1: Stellar density profile as part of our stability test. Using the machinery de-
scribed above, we introduce a stellar component in a live dark matter halo which we evolve
in isolation. The system undergoes a rapid phase of re-virialisation which changes slightly
the stellar density profile shape. However, it then stays constant during the next 10 Gyr
of evolution in isolation. The arrows mark the radii enclosing 10, 20 33 and 50 percent
of the light, these increase as time increases (0.0, 0.2, 0.5, 1, 5 and 10 Gyr). The size
change impeded by the re-virialisation process is of order 5 percent proving the stability
and robustness of our method to generate spheroids in cosmological dark matter haloes.
This galaxy has a dark halo mass of Mh = 7× 1012M⊙, stellar mass of M∗ = 9× 1010M⊙

and half-light radius of re ∼ 2 kpc
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Figure 6.2: Evolution of density profiles from our stability test for the different components:
dark matter (blue), stars (red), total (black). The system stabilises quickly with the dark
matter contracting on a timescale of t ∼ 200 Myr and then remaining intact subsequently.
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Figure 6.3: Projections of the same stellar component as in Figure 1 and 2 showing the
flattening of the stellar component induced by the re-virialisation process. The stellar
component is placed at the centre of the most bound dark matter particles (bottom of
the potential). The velocity of the dark matter halo particles are also re-adjusted to be
in the frame of the 100 most bound dark matter particles. The image illustrates that
the complicated phase-space structure of real dark matter haloes can affect some of the
outer regions of the galaxy during revirialisation, however this is only true for a negligible
amount of stellar mass.
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Figure 6.4: Mass-size relation of our galaxies. Red symbols belong to the compact massive
quiescent galaxies class while the blue ones belong to the massive star-forming galaxies
class. Below 1010M⊙, the observations are uncertain so we mimic the observed scatter in
sizes (black triangles).
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Run M200 c R200

h−1M⊙ h−1Mpc
Ph-C-2 5.495× 1014 5.11 1.386
Ph-E-2 5.969× 1014 5.19 1.369

Table 6.1: Basic structural properties (virial mass M200, concentration c and virial radius
R200) of the Phoenix clusters at z = 0 from the original dark matter only simulations.

matter halo and their velocity are recentred according to the centre of velocity calculated
around xpot.

6.2.5 Cluster simulations

We choose to run two cluster re-simulations from the Phoenix suite. These are the Ph-E
and Ph-C haloes for which we summarise their properties in Table 1. Before we begin
to present our re-simulations’ results, it useful to ask ourselves where did the particles
constituting the central r < 10kpc regions of the galaxy clusters come from? This is shown
in Figure 5, which illustrates the fact that the central regions of BCGs are significantly
shaped by multiple mergers which was already noted in Gao et al. (2004).

6.3 Structure of galaxy clusters

6.3.1 Density profiles

In this section we present the density profiles for the stellar, dark and total matter com-
ponents in our runs. We also compare those to their dark matter counterparts. This
is shown in Figure 6, where we show the normalised ρr2/(ρ200r

2
200) profiles as a function

of normalised virial radius r/r200. Overplotted in this figure are the profiles derived in
Newman et al. (013a,b). The first result to note is that the total density profiles in the
dark matter only and two collisionless fluids run look very similar (almost identical, except
in the inner-most regions of the dominant galaxy). This already suggest that the attractor
hypothesis has been at work. The dark matter on the other hand shows a dip starting at
a scale coincident with r/r200 ∼ 0.01− 0.02 from centre of the final merger remnant. The
stellar density profile is also in reasonable agreement with the stellar profiles measured by
Newman et al. (013a). Note that this result came as to assume a purely dissipationless
formation channel from z = 2 to z = 0 for the BCG. This suggests that star formation
may not play such an important role in the formation of BCGs.

In Figure 7, we present the slopes of the density profiles defined as γ = −d ln(ρ)
d ln(r)

. These
are plotted as a function of normalised virial radius r200. In computing the slopes we have
binned our data between r = 0.1 kpc and r = 1000 kpc into logarithmic bins of width
∆ log(r) = 0.1. We have tried other ways of binning the data and they all lead to the same
consistent result. Overall, the slope of the stellar profiles are consistent with the those



6.3 Structure of galaxy clusters 77

Figure 6.5: Distribution of dark matter particles identified in the original Phoenix simu-
lations making up the central 10 kpc of the galaxy clusters at z = 0 tracked at z = 2.
This illustrates that the central region of galaxy clusters are not always fully assembled by
z = 2.
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Figure 6.6: ρr2 profiles for the clusters normalised by ρ200r
2
200 as a function of normalised

radius r/r200 for the stars (left panel in red), dark matter (middle panel in blue) and
total matter (right panel in black) respectively. The coloured lines in the last two panels
represent the profiles from Newman et al. (2013a,b). The magenta lines correspond to the
dark matter density profile curves from the original dark matter runs (omitting baryonic
loading). The inclusion of stars clearly caused the central dark matter to drop in the
inner already within r ∼ 10 kpc. When looking at the total mass profiles, the dark matter
only and our re-simulation curves do not change much even within the half-light radii of
the galaxies. This suggests an attractor solution that is validated already below the half-
light radius of the final galaxy. The two black arrows mark the two radii where a mass
deficit should be expected due to black hole mergers for our most conservative estimate
and slightly more relaxed one (see discussion in section 6.4).
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measured, except that there may be a systematic shift at lower radii r/r200 < 0.002. The
slope of the dark matter density profiles in the from the re-simulations are systematically
shallower than those of the dark matter only runs. The transition scale where these become
shallower than the NFW asymptotic solution (represented by the horizontal dash-dotted
line) occurs at r/r200 ∼ 0.01 which is also coincident with that in observations 0.01 <
r/r200 < 0.03. Turning to the total density profiles, these also match those observed by
Newman et al. (013a) and they follow closely the profiles from the dark matter only runs.
It seems that the enough mixing has occured in the central region of the cluster to give
rise to an attractor solution which extends further into the half-light radius of the BCGs.

6.4 Mergers, mass re-shuffling & dark matter heating

Ph-E-2 Make a new plot for the C halo taking the z=0 solution in too.
Ph-C-2

Between z = 2 and z = 1.0 the most massive progenitor is interacting with a number of
galaxies which constantly reshape the slope of the dark matter density profile. At z = 1.0,
one galaxy eventually mergers to the centre and the system is relaxed with a slope of a
dark matter density profile which is already substantially shallow (see Figure 11). Between
a few other galaxies orbits about the central 50 kpc of the most massive progenitor heating
the dark matter until one eventually merges and relaxes preserving a shallower dark matter
density profile. The final merger by z = 0 also preserves this shallow dark matter cusp and
extends it further innerwards.

A number of important features should be noted. The identity of the particles making
up the central stellar/dark matter density distribution changes during the merger processes.
This is made clear by following the distribution of particles making the central stellar/dark
matter distribution of the most massive progenitor of the galaxy cluster at z = 2 (shown by
the black solid thick line). Through the subsequent mergers, this distribution gets pushed
out to be replaced by the new incoming material associated with the infalling galaxies. We
also show the associated slope of the dark matter density profile.

Moreover, the change in the slope of the dark matter is mostly related to mergers
bringing a considerate amount of stellar material towards the centre of the cluster pushing
against the existing central density distribution (this is shown further in FIgure YYY).
We see that the BCG underwent numerous mergers (6 or 8 depending on the cluster re-
simulation) and not all of them were effective enough in creating an appreciable change in
slope of the dark matter. This is related to their initial density profile. We distinguished the
mergers which pushed dark matter out and those which did not and tracked the structural
information of the galaxies at z=2. The distinction between satellite and centrals is also
made through the use of different line styles. Thus multiple mergers are not a sufficient
condition to guarantee a change in the slope of the dark matter density profile. The origin
of the shallow dark matter cusps is clearly related to the dynamical friction exerted by the
infalling galaxies on the surrounding dark matter. However it is important to note that this
process not only brings stars to the centre of the central galaxy, but also the dark matter
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Figure 6.7: Slopes of the different components as a function of normalised radius r/r200.
The coloured lines are the slopes obtained from the analysis of Newman et al. (2013a,b).
The agreement between the re-simulations and measured total matter slope is reasonable.
The dark matter profile (blue line) is shallower than the dark matter only runs (magenta
line) and the scale at which these become less than γ = 1 is coincident with the scale from
Newman et al. (2013b), coincident with a physical radius of r = 10kpc while the stars are
still as steeply cusped as found in Newman et al. (2013b). Given that the galaxies started
with inner dark matter density profiles steeper than the original NFW solution from the
dark matter only run, the effect seen here would be enhanced for galaxies in which a phase
of contraction would have been avoided (due to baryonic processes). The two black arrows
mark the two radii where a mass deficit should be expected due to black hole mergers for
our most conservative estimate and slightly more relaxed one (see discussion in section
6.4).
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associated with the cores of the merging galaxies. This interplay between accreted/expelled
dark matter creates dark matter cusps which are not as shallow as reported by previous
simplified studies. It is of interest to study the effect of early baryonic feedback on the
structure of the galaxies at z=2 as the slopes reported in here would be shallower. This
has as already been shown qualitatively in the study of Laporte et al. (2012). This will be
explored in the future.

In a study on phase-mixing, ?) argued as an extension to mixing theorems that the
steepest cusps always survive in mergers. This seems to be the case, however, when decom-
posing the system into dark and stellar matter, this of course cannot hold longer because of
the mixing between species. This is because the stars are on higher binding energy orbits
and have higher densities that the background and thus can efficiently exert dynamical
friction on the surrounding dark matter leading to slopes that are shallower than the dark
matter only runs. It must be stated there is nothing surprising in the slope of the dark
matter to be shallower than the dark-matter only run in the run with baryonic loading
(which also induced a steepening of the dark matter density profiles in the progenitor
galaxies). Our experiment hints that there may be an attractor solution to collisionless
systems however in order to test this rigorously one must show that the multiple merging
of r−2 haloes should lead to a r−1 solution. This problem although trivial in its essence
cannot be addressed properly with N-body simulations due to the inherent problems with
softening leading to incorrect dynamics at the centre of the galaxies although stable models
can be constructed (Barnes, 2012).

6.5 On the contribution of super-massive black-holes

Given the substantially high number of mergers occurring in the formation of BCGs in
ΛCDM, it is worthwhile to further consider the effect of black-holes on the central distri-
bution of dark and stellar matter in such objects. While this current experiment does not
take into account the presence of supermassive black-holes in the progenitor galaxies, we
can still use the information about galactic structure in the initial conditions and the sub-
sequent merger events to make an estimate of their potential importance in re-distributing
matter below 3kpc (omitting the complications of dynamics due to recoils and unstable
situations like those of multiple black-hole systems). This calculation should only serve as
an order of magnitude estimate.

The BCG in Ph-E has experienced 8 mergers, with 6 which have brought much stellar
material to the centre of the galaxy. Given the progenitor galaxies’ initial stellar masses we
estimate their expected host blackhole masses. This is done through the relation published
in Bennert et al. (2011): log(MBH) = α(log(M∗) − 10) + β log(1 + z) + γ + σ + 8, with
α = 1.09, β = 1.96, γ = −0.48, σ = 0.36. Merritt (2006) studied through N-body
simulations the effect of the mass deficit impeded by binary supermassive black holes
and further quantified the magnitude of such deficits in relation to the merger history
of galaxies. He found that Mdef ∼ 0.5M12 with M12 the total mass of the binary and
that this result depended weakly on the mass ratio q = M1/M2 of the black holes or on
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the galaxies’ nuclear density profiles. Assuming that after every each subsequent mergers
with M2 << M• black holes coalesce to a new binary, he quantified the magnitude of the
cumulative mass deficit finding that Mdef = 0.5NM•, where N is the number of mergers
and M• is the final mass of the black hole. We begin by summing the mass of all the
black holes in the progenitor galaxies which merge to the centre of the BCG and compare
it to the enclosed total mass within 3,2,1 kpc. If all black-holes were to merge the final
black-hole mass for the BCG in Ph-E would beMBH = 6.0×1010M⊙. We will assume that
after the first merger, a binary blackhole is formed with mass M12 =M1+M2. In this case
M12 = 2× 1010M⊙. We also note that the subsequent black-holes which will merge to the
centre of the BCG haveM << M12. So given that N = 3−5 mergers occured at the centre
of the BCG, our estimated deficit mass would be Mdef ∼ 0.5NM• ∼ 6.4 − 15 × 1010M⊙.
This could easily account for a core radius up to 3kpc given that the structure of the merger
remnant has M(r < 3kpc) = 1.4 × 1011M⊙. Such large cores are visible in some BCGs
(Postman et al., 2012) and such objects may be well accounted for in ΛCDM.

Proceeding in a similar way for Ph-C, we identify between 5 mergers (if more than a
third galaxy mass is identified within 20kpc of the final merger remnant, if we relax this
to a tenth then this number goes up to 8). For the initial conditions considered here this
would amount to a final black hole mass of M• ∼ 5 − 7 × 1010M⊙. This would amount
to a mass deficit of Mdef ∼ 0.5NM• ∼ 12 − 28 × 1010M⊙. Taking our most conservative
estimate this is also enough to explain core sizes as large as 3kpc and based on our upper-
limit, might also have some implications for the matter distribution out to 6 kpc, given
that M(r < 6kpc) = 28 × 1010M⊙. We show the radii where mass deficits can affect the
distribution of matter in Figures 6.6 and 6.7 for both clusters.

We stress however, that although this estimate relies on a strong assumption, namely
that the black holes coalesce before the next merger. This certainly may not be the case and
one would expect a triple black-hole system which would get ejected by the gravitational
slingshot Mikkola & Valtonen (1990) which would lead to smaller values of M• but larger
values ofMdef because multiple black hole systems are more efficient than a binary to move
stars around. Another possibility is that of the gravitational rocket effect which could give
kicks to a coalescing binary up to ∼ 250km/s which may give rise to mass deficits as large
as ∼M• (Merritt et al., 2004; Boylan-Kolchin et al., 2004). Gas which may be expected in
some of the progenitor galaxies (given the constraints on the fraction of quiescent galaxies
(Muzzin et al., 2013)) could however help coalescence of some binary black holes, but also
promote the formation of stars: this would lead to smaller mass deficits. However, it could
also be that such star-forming galaxies may be transformed into red dead ellipticals by the
time of the merger, which would certainly lead to a cumulation of dissipationless mergers.

Given the results of our experiment and our back of the envelope calculations, black
holes will play an important role in the re-distribution of matter already within 3 kpc of
the BCGs (but also perhaps up to 6kpc). This will have important consequences for the
distribution of matter within the inner-most regions of the cluster (both dark and stellar
matter) and the expected dark matter annihilation signal. The inclusion of black-holes at
the centre of galaxies will bring an additional source of dynamical friction affecting the
inner dark matter and stellar distributions. This is beyond the current scope of this paper
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Run M1kpc M2kpc M3kpc M4kpc ΣMBH

M⊙ M⊙ M⊙ M⊙

Ph-C-2 4.3× 1010 1.0× 1010 15.0× 1010 19.6× 1010 (4.8− 7.3)× 1010

Ph-E-2 2.6× 1010 6.5× 1010 13.7× 1010 18.7× 1010 (4.2− 6.1)× 1010

Table 6.2: Enclosed total masses within r = 1, 2, 3, 4kpc compared to the sum of all black
holes in the BCG progenitor galaxies.

but will be addressed in a future paper where we update our initial conditions generator for
creating stable (distribution function generated) N-body galaxy models with black holes
(Laporte & White in prep).

6.6 Discussion

Previous studies have considered the effect of dynamical friction due to galaxies as they
merge to the centre of galaxy clusters. However, these were highly unrealistic for several
reasons and not able to address the problem robutsly as we will argue here. Massive point
masses of 1011M⊙ were used to represent galaxies, this is already a dangerous approxima-
tion because it completely ignores the fact that galaxies can get stripped El-Zant et al.
(2004). Moreover, the numbers of such clump galaxies considered in such experiments had
no physical motivation and arbitrary. Later experiments considering strippable galaxies
would ignore the presence of dark matter haloes around them in the initial conditions
thus already biasing heavily results towards efficient dark matter heating (Nipoti et al.,
2004). Finally, previous cosmological N-body simulations have used initial conditions in
very stark contradiction with observational constraints on the stellar mass function and
mass-size relation of galaxies at high redshift (Ruszkowski & Springel, 2009). This meant
that only qualitative behaviours could be studied (Laporte et al., 2012). Our current ex-
periment does not suffer from any of those caveats or strong approximations and we are
able to robustly test the importance of mixing processes at the centre of galaxy clusters in
a cosmological context. Our results are based on the assumption that the later assembly at
the centre of galaxy clusters is entirely orchestrated by collisionless mergers. This makes
the problem well-posed and addressable through the N-body method. The fact that it
reproduces observed structural trends from massive clusters which include both cool and
non-cool core clusters hints that this may indeed be relevant for all galaxy clusters. Fi-
nally, our experiment also shows that all previous studies over-estimated the net effect of
dynamical friction heating in galaxy clusters.

Lately there have been simulation attempts at incorporating the effect of AGN feedback
to study its effect on the distribution of matter on the scale of clusters (Martizzi et al.,
2012; Dubois et al., 2013). However, a number of outcomes are clearly problematic in
those studies. As an example, the latest simulations of Martizzi et al. (2012) of a massive
galaxy clusters which produced a cored dark matter density profile in their run with AGN
feedback. However, it is important to note that the dark matter core size produced in
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their cosmological run coincides exactly with the core size produced in their stellar density
profile. Such large stellar cores are clearly not present in the observations of Newman et al.
(013a) (see Figure 6 top left panels). While AGN feedback activity may change the distri-
bution of dark matter in the progenitor galaxies of BCG at z = 2, it cannot be responsible
for setting the dark matter core sizes at later times. If AGN is indeed active at all times,
both the stars and dark matter would behave similarly, which is exactly the result which
was recovered in the cosmological run of Martizzi et al. (2012). The picture we are pre-
senting here is consistent in the sense that the stars have much higher binding energy than
the dark matter and this enables them to scour the central dark matter to produce shallow
dark matter cusps of sizes r ∼ 10kpc while still preserving steep enough stellar density
profiles within the 3 − 10kpc regions of the cluster profile as expected from observational
constraints (Newman et al., 013b).

Our simulations manages to isolate the most relevant process shaping the central regions
of galaxy clusters at late times: dissipationless mergers. The effect of these mergers is dif-
ferent on both the dark matter and the stellar matter content. Together with our study on
the structural assembly of BCGs through galactic cannibalism (Laporte et al., 2013) moti-
vated by predictions of semi-analytic models (implying an assembly mainly orchestrated by
dissipationless mergers) we have presented a consistent picture for BCG formation which
solidifies some of the early proposed scenarios for their formation (Ostriker & Tremaine,
1975; White, 1976). It remains to be seen whether hydrodynamical simulations will be
capable to make robust predictions on the initial dark matter structure of the progeni-
tor galaxies at z = 2 while reproducing similarly stellar properties consistent with the
increasing z = 2 observational constraints. This would be a great subject of research for
the coming years which will rely on observational advances in instrumentation to study
resolved kinematics of z = 2 massive quiescent galaxies.

Our initial conditions were created through impulsively adding stars at the centres
of dark matter haloes. This in effect causes a phase of re-virialisation resulting into a
contracted dark matter halo. There are candidate mechanisms which may actually prevent
the dark matter density profile to contract (supernova feedback or perhaps more relevant
AGN feedback). We are however affected by our lack of understanding on the available
energetics which forces us to only consider ad-hoc parameters to make the dark matter
density profiles shallower in the progenitor galaxies. Nonetheless, it is clear that in those
instances the effects seen in our simulations will be amplified and subsist all the way down
to 5−4kpc. The fact that we started with dark matter density profiles which were already
steeper than their dark matter only simulation counter-parts adds much more credibility to
the role of multiple dissipationless mergers in shaping the central dark matter distribution
in galaxy clusters. This is why we have deliberately not tried to temper with the dark
matter distribution in the initial conditions.

Below r ∼ 4kpc our simulations are most likely inadequate to predict the density
structure of matter. However, we were able to estimate the expected amount of matter
that could get evacuated due to black hole mergers. These would most probably scour out
further the dark matter and stars below a scale coincident with r ∼ 3kpc and influence
perhaps larger radii (r ∼ 6kpc). This would have important implication on the annihilation
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signal from dark matter at the centre of clusters Gao et al. (2012). The high-number of
mergers identified in our simulations also suggest a natural explanation for the largest
stellar core sizes observed in some BCGs Postman et al. (2012). It would be of interest
to use such results from cosmological simulations to study the formation of stellar/dark
cores in the inner-most regions of the Brightest Cluster Galaxies. This would have also
important repercussions on the gravitational wave signal expected in those objects. This is
currently being investigated (Laporte & White in prep). Finally, relating our observations
to the phenomenology observed in cosmological hydrodynamical simulations would be of
interest and is indeed under way (Schaeller et al. in prep).

6.7 Conclusion

We have presented a series of collisionless N-body simulations of the late assembly of galaxy
clusters from z = 2 to z = 0. These simulations provide the first quantitative confirmation
of an attractor-like solution in galaxy clusters as proposed by Loeb & Peebles (2003) down
to scales of r/r200 ∼ 0.002 − 0.003. It is yet to be seen whether supermassive black holes
could provide another source for dynamical friction heating of the dark matter (and stars)
further extending this range. Although some qualitative work has been carried in the past,
it was not obvious whether upon baryon loading the total density profiles would go back to
the dark matter only result (Gao et al., 2004). We show that dissipationless mergers are
indeed able to produce shallow dark matter cusps in galaxy clusters consistent with the
recent detailed study of Newman et al. (013b). The radius of transition below the NFW
solution in our simulations occurs at r/r200 ∼ 0.1− 0.2 similar to that in observations.The
difference in slopes achieved between the runs with and without initial baryonic loading
are of the order ∆γ ∼ 0.3− 0.4. Multiple dissipationless mergers can have a strong effect
on the dark matter while still leaving stellar cusps intact making them ideal candidates to
explain the observed distribution of matter in galaxy clusters. If baryonic physics at high
redshifts is able to alter the density structure of dark matter to shallower density profiles,
we expect greater depressions than those observed in the simulations. Early feedback may
change the original structure of the dark matter density profile in the BCG progenitor
galaxies (Dubois et al., 2013) but such processes cannot be relevant at later times because
they would affect both the stars and dark matter in the same way, which observations
suggest is not the case. Based on the high number of mergers occuring at the centre of the
cluster we argued that black holes could play a major role in shaping the inner-distribution
of matter below 3−4kpc. In a future contribution, we shall address this problem to further
study the inner-distribution of matter in clusters in relation to the observed mass-deficits
in massive BCGs and the expected dark matter annihilation signal in galaxy clusters.
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Chapter 7

Measuring the slopes of mass profiles
for dwarf spheroidals in triaxial
CDM potentials

We generate stellar distribution functions (DFs) in triaxial haloes in order to examine the
reliability of slopes Γ ≡ ∆logM/∆logr inferred by applying mass estimators of the form
M ∝ Reσ

2 (i.e. assuming spherical symmetry, where Re and σ are luminous effective radius
and global velocity dispersion, respectively) to two stellar sub-populations independently
tracing the same gravitational potential. The DFs take the form f(E), are dynamically
stable, and are generated within triaxial potentials corresponding directly to subhaloes
formed in cosmological dark-matter-only simulations of Milky Way and galaxy cluster
haloes. Additionally, we consider the effect of different tracer number density profiles
(cuspy and cored) on the inferred slopes of mass profiles. For the isotropic DFs considered
here, we find that halo triaxiality tends to introduce an anti-correlation between Re and σ
when estimated for a variety of viewing angles. The net effect is a negligible contribution
to the systematic error associated with the slope of the mass profile, which continues to
be dominated by a bias toward greater overestimation of masses for more-concentrated
tracer populations. We demonstrate that simple mass estimates for two distinct tracer
populations can give reliable (and cosmologically meaningful) lower limits for Γ, irrespective
of the degree of triaxiality or shape of the tracer number density profile.

7.1 Introduction

The Milky Way’s dwarf spheroidal (dSph) satellites include the most dark-matter-dominated
galaxies known, with dynamical mass-to-light ratios ranging from order ∼ 10 to sev-
eral hundreds in solar units (Mateo, 1998). This makes dSphs objects of prime inter-
est for studying the distribution of dark matter in galaxies. dSphs lack atomic hy-
drogen; therefore methods for measuring dSph masses must rely on the kinematics of
their pressure-supported stellar populations. In the past decade, many techniques have
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been developed with the goal of determining the internal mass distributions of dSphs:
spherical Jeans modelling (okas & Mamon, 2001; Strigari et al., 2006, 2008; Koch et al.,
2007; Battaglia et al., 2008; Walker et al., 2009; Wolf et al., 2010), phase-space modelling
(Wilkinson et al., 2002; Amorisco & Evans, 2011), the multiple stellar populations method
(Walker & Peñarrubia, 2011), the use of the virial theorem for spherical and constant flat-
tened systems (Agnello & Evans, 2012) as well as axisymmetric Jeans modelling (Hayashi & Chiba,
2012) and Schwarzschild modelling (Jardel & Gebhardt, 2012; Breddels et al., 2012).

Complicating most analyses is the fact that the inferred dynamical mass is degener-
ate with the anisotropy of the velocity dispersion tensor and the latter is poorly con-
strained by available line-of-sight velocity data. While this degeneracy leaves the full mass
profile underconstrained in a standard Jeans analysis (Strigari et al., 2006; Walker et al.,
2009), its relative weakness near the halflight radius of the stellar tracer makes estimates
M(Re) ∝ κReσ

2 (where Re and σ are luminous effective radius and global velocity disper-
sion, respectively, and κ is a constant) robust to various forms of anisotropy and/or even
to the shape of the mass profile (Walker et al., 2009; Wolf et al., 2010).

The presence of at least two chemo-dynamically distinct stellar subpopulations in sev-
eral dSphs (Tolstoy et al., 2004; Battaglia et al., 2011) then provides a unique opportunity
to measure the slopes of dSph mass profiles, Γ ≡ ∆logM/∆logr, directly by estimat-
ing M(Re) at two different effective radii. Walker & Peñarrubia (2011, ‘WP11’ hereafter)
introduce a statistical method that uses estimates of stellar positions, velocities and metal-
licities to estimate Re and σ for each of two stellar subpopulations within the Fornax and
Sculptor dSphs, obtaining Γ = 2.61+0.43

−0.37 and Γ = 2.95+0.51
−0.39, respectively. Taken at face

value, these measurements exclude, with significance ∼ 96% and ∼ 99%, respectively, the
Navarro, Frenk & White (1997, ’NFW’ hereafter; Γ ≤ 2 at all radii) profile that is often
invoked to characterise density profiles of cold dark matter (CDM) halos formed in dissipa-
tionless cosmological simulations. WP11 tested their method against spherical dynamical
models with various degrees of anisotropy and found that mass estimators of the form
M(Re) ∝ Reσ

2 systematically overestimate the enclosed mass more strongly for tracers
that are more deeply embedded (i.e., more concentrated) in their host haloes. This bias
implies that slopes Γ ≡ logM/∆logr tend to be systematically underestimated, such that
WP11’s claim of their quoted levels of NFW exlcusion were conservative.

However, despite the assumption of spherical symmetry that is common to most dSph
studies (exceptions include the axisymmetric Schwarzschild analyses of Jardel & Gebhardt
2012 and the flattened models considered by Agnello & Evans 2012), the composite stellar
populations of real dSphs are clearly not spherical. The Milky Way’s ‘classical’ dSph satel-
lites have ellipticities ranging from 0.1ǫ0.6 (Irwin & Hatzidimitriou, 1995). Furthermore,
haloes formed in CDM cosmological simulations tend to be triaxial (Allgood et al., 2006;
Vera-Ciro et al., 2011). Therefore, insofar as CDM represents the null hypothesis regard-
ing cosmological structure formation, the relevance of inferences drawn from spherically-
symmetric analyses depends critically on their robustness to axisymmetric and triaxial
cases.

Here we test the slope measurements of WP11 for robustness against non-spherical
symmetry. We exploit the fact that in a triaxial potential, the energy is an integral of the
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motion and thus we can construct isotropic stellar distribution functions (DF) of the form
f(E) even within triaxial N-body dark matter haloes. We use the prescription presented
by Laporte et al. (2013) to build stellar DFs with various degrees of concentration within
cosmological CDM haloes produced in the Aquarius (Springel et al., 2008) and Phoenix
(Gao et al., 2012) runs to cover a wide range of triaxiality parameters from Milky Way
to cluster type environments. Section 2 discusses the numerical simulations and method
used to generate DFs. Section 3 describes our use of samples from these DFs (projected
along various lines of sight) to examine systematic errors inherent to the WP11 method
for various forms of the tracer number density profiles. We discuss results and conclude in
section 4.

7.2 Numerical Methods

7.2.1 Dark matter haloes

For the modelling of dSph dark matter haloes, we use the Aquarius simulations (see
Springel et al. (2008) for details). This is a set of six high-resolution dark matter only
simulations of the formation of Milky Way mass dark matter haloes in ΛCDM. In the
level-2 resolution the particle mass is ∼ 104M⊙ and the softening length is ǫ = 65 pc co-
moving. We extract a number of dark matter haloes in the mass range 109 − 1010h−1M⊙,
where h = 0.73, using the subhalo finder subfind (Springel et al., 2001). The shape of
the Aquarius subhaloes have axis ratios which increase with radius and which are mildly
triaxial with axis ratios < b/a >∼ 0.75 and < c/a >∼ 0.6 at 1 kpc (Vera-Ciro pri-
vate communication). We also complement our sample with subhaloes drawn from cluster
simulations (Gao et al., 2012) to bracket the range of possible triaxiality parameters for
subhaloes in CDM and rescaled masses by a factor of 1000.

7.2.2 Generating Tracers

The weighting scheme used here was developed by Laporte et al. (2013) and is a generalisa-
tion of that of Bullock & Johnston (2005) to triaxial systems. For details see Laporte et al.
(2013) In short, in order to generate a luminous stellar profile, we take each simulation par-
ticles of energy E = 1

2
v2+Φ to simultaneously represent dark matter and stars in diferent

amounts through the weight function ω(E) = N∗(E)
N(E)

= f∗(E)g(E)
f(E)g(E)

, where N is the differential
energy distribution, g is the density of states and asterisks denote stellar quantities. One
generates f∗(E) through specifying the target number density profile ν = ν(r) and using
the Eddington formula with an additional approximation to deal with the multivalued be-
haviour of Φ = Φ(r) with spherical radius. In this way, the method creates a stellar profile
which retains contours of the flattening of the total potential.

Figure 1 displays projected number densities and line of sight velocity dispersion profiles
obtained by sampling random projections of DFs (for two different stellar number density
profiles and different concentrations) calculated using the machinery described above. We
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check for equilibrium by tracking the stellar DFs forward in time for a period of 150 Myr,
during which the stellar density profiles remain stable.

WP11 originally tested their method using models in which stellar populations trace
dark matter potentials characterised by generalised Hernquist (1990, see also Zhao 1996)
profiles:

ν∗(r) = ν0

(

r

Re

)−γ∗ [

1 +

(

r

Re

)α∗

](γ∗−β∗)/α∗

(7.1)

and

ρdm(r) = ρ0

(

r

rdm

)−γdm
[

1 +

(

r

rdm

)αdm
](γdm−βdm)/αdm

. (7.2)

For the stellar number densities, WP11 considered Plummer profiles, (α∗, β∗, γ∗) = (2, 5, 0),
which provide good fits to dSph surface brightness profiles (Irwin & Hatzidimitriou, 1995;
McConnachie & Irwin, 2006) and has the virtue of depending on a single parameter, the
projected halflight radius Re. They also considered alternative profiles that retain a lu-
minous core (γ∗ = 0) but fall off more slowly/quickly at large radius than do Plummer
profiles1, with (α∗, β∗, γ∗) = (2, 4, 0) and (2, 6, 0), respectively. Strigari et al. (2010) have
shown that cuspy tracer number density profiles provide a good match to the observed
surface brightness and velocity dispersion profiles of the composite stellar populations in
dSphs. At a fixed half-light radius, a cuspy tracer component would have a lower ve-
locity dispersion than would its cored counterpart. In order to test for sensitivity to
the inner profile of the tracer components, here we consider models with stellar cusps
(α∗, β∗, γ∗) = (4, 4.5, 1) as well as cored Plummer profiles with (2, 5, 0).

7.3 Mass modelling: multi-component method

The presence of multiple stellar populations in some dSphs enables the observer to estimate
enclosed masses at two different half-light radii in the same potential. Testing their method
on DFs drawn from spherically-symmetric models with cored light profiles, WP11 find that
masses tend to be over-estimated more strongly for more-concentrated stellar populations.
As a result, the slope Γ tends to be underestimated, providing conservative lower limits on
the true slope. We now use our models f∗(E) to test whether this behavior holds for the
case of triaxial haloes and/or when the tracer number density profiles are cusped instead
of cored.

7.3.1 The bias in the WP mass-estimator: systematics

After calculating DFs as described above, we project each model along 100 random lines
of sight uniformly sampled on a sphere. For each projection angle, we then calculate the

1They actually considered models with γ∗ = 0.1 because models γ = 0 have f(E) < 0 in some regions.
In the simulations the resolution limit already prevents this from happening for our models.
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Figure 7.1: Projected number density and line of sigh velocity dispersion profiles for one
Aquarius subhalo using the present weighting scheme. Top left: Plummer profiles with r∗ =
0.3, 0.5, 1.0h−1kpc, Top right: (α∗, β∗, γ∗) = (4, 4.5, 1) profiles with r∗ = 0.3, 0.5, 1.0h−1kpc.
The vertical dotted line marks the point where r = 2.8ǫ.
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half-light radius Re of each population. In order to mimic the WP11 method, we estimate
Re by χ

2-fitting a Plummer profile to the tracers. The mass enclosed within Re is then

M(Re) ∝ Re
ΣN

i=0wi(vi − v̄)2

ΣN
i=0wi

∝ Reσ
2, (7.3)

where wi are the N-body particle weights, and σ is the global velocity dispersion of the
tracers. The slope is then calculated as Γ = log(M1/M2)

log(r1/r2)
.

In order to check whether the WP11 method continues to give conservative limits,
Figure 2 displays distributions of the bias E[Γ] = Γest − Γtrue over all randomly-chosen
viewing angles. In nearly all cases the estimated slope is smaller than the true slope, such
that the estimated slopes continue to represent conservative lower limits. This behavior
holds regardless of the degree of triaxiality and/or whether the light profile is cusped or
cored.

We emphasise that the velocity dispersion that enters the WP11 mass estimator, M ∝
Reσ

2 refers to the global dispersion of all stars in a given stellar sub-population. Recently,
Kowalczyk et al. (2013, ‘K12’ hereafter) have found that use of a different mass estimator
- one that refers to the velocity dispersion only of stars inside the half-light radius - would
give less reliable limits on Γ, particularly when triaxiality is present. We confirm this result
using our own DFs (Figure 3): indeed, when velocity dispersions are estimated using only
stars inside Re of their respective subpopulation, the estimated slopes have large scatter
about the true values and do not constitute reliable lower limits.

In addition to stellar number densities used in studying dwarf spheroidals, we also
show results from additional tests for which we adopted the Jaffe profile, (α∗, β∗, γ∗) =
(2, 0, 2), which can be used to model ellipticals and which has steep stellar cusp (γ∗ = 2).
In this case, we determine the half-light radius by fitting a de Vaucouleurs profile. For
these cases with steep stellar cusps, we find that that WP11’s method becomes unreliable
when the stellar populations are highly concentrated (top panel in Fig. 2); however, for
sufficiently extended stellar populations the method still recovers a conservative (i.e., biased
towards low values) estimate of the slope of the underlying mass profile, albeit with a more
prominent tail towards positive values.

7.3.2 Why triaxality does not matter so much?

We can understand the relative insensitivity of the WP11 method to triaxiality by con-
sidering the coupling of estimated quantities Re and σ with respect to projection angle.
Let us rotate an individual halo in the frame of its body axes (as evaluated at a radius of
1h−1kpc) such that the major axis lies on the x-axis and the minor axis lies on the y-axis.
We then observe it along different polar angles in the x−y plane and estimate the half-light
radius and velocity dispersion via the same χ2 fitting procedure used above. We notice
that when the velocity dispersion is large (along the major axis) the estimated value of Re

is at its minimum value and vice versa (Figure 4). This anti-correlation of Re and σ tends
to cancel the effects of triaxiality on the mass estimator. Therefore the slope Γ will be less
sensitive because at a fixed angle θ any bias in M(Re) will cancel out in the estimate of
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Figure 7.2: The stacked bias distribution in the slope determination of live N-body dark
matter haloes (all observed through 100 different random lines of sights). The vertical line
marks the point where Γest − Γtrue is zero. Left hand: Results for Aquarius subhaloes for
Plummer and (4, 4.5, 1) profiles (in black and dotted magenta respectively) Right Hand::
Phoenix rescaled subhaloes for Plummer, (4, 4.5, 1) and Jaffe profiles (in black, dotted
magenta and dashed blue respectively). The half-light radii of the stellar populations are
determined through fitting a Plummer profile to the number density profile (as assumed
in WP11). (re1, re2, re3) = (0.3, 0.5, 1.0)h−1kpc.
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Figure 7.3: Same as figure 2 but showing results derived using the method used in Kowal-
czyk et al. 2012. Clearly losing the kinematic information outside the half-light radius of
the tracer makes the estimator highly unreliable. This method is not that used in WP11.
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Γ. This is why the biases we recover in Figure 2 are similar to those found by WP11 for
spherically symmetric models. The fluctuations in the mass estimates due to triaxiality
vary from 10 to 20 percent depending on the embededness of the tracer population.

7.4 Discussion and conclusions

We have presented families of isotropic distribution functions of the form f(E) in triaxial
potentials extracted from dark-matter-only simulations. These span a range of dark matter
density profiles for which we have tested the method of Walker & Peñarrubia (2011). Our
tests show that the method is generally able to place conservative limits on slopes of mass
profiles, even when the light profiles have NFW-like cusps as advocated by Strigari et al.
(2010). Thus, we conclude that triaxiality has little impact on published analyses of dSph
stellar kinematics that assume spherical symmetry. The reason is that Re and σ are anti-
correlated over the range of projection angles, effectively cancelling the effects of triaxiality.
However, we have found that the WP11 method can break down if the stellar tracers are
highly concentrated and have steeply cusped number density profiles, e.g., the Jaffe profiles
examined in Section 3.1. Some of the haloes which were identified by subfind are strongly
stripped and the tracer may not be entirely in equilibrium. However, using those models,
we were still able to recover successful limits on the slope of the dark matter density profiles.
This suggests that tidal stripping does not unduly impact the results of WP11.

Recently, a similar study on the same subject has been carried out by K12. Our work
differs in three aspects:

1. We consider haloes which form within a ΛCDM cosmological context. K12 have
considered spherical models which get tidally stirred under a static potential.

2. Our models do not have rotation. Many galaxies in K12 still retain rotation, which
is not observed in dSphs.

3. K12 do not test the robustness of WP11 to triaxality, but show that a mass esti-
mator based on the velocity dispersion within the half-light radius of a tracer can
misinterpret the true value of the slope of the total mass profile. We confirm their
result in Figure 3.

Finally, we note that given a density profile, there exists many possible velocity dis-
persion profiles which may be consistent with the observed data (allowing for anisotropy).
However, WP11 showed this is not an issue for their method under anisotropic Ossipkov-
Merritt models but also those with constant anisotropy. Combined with the results of our
current study, the WP11 method seems to be robust to both anisotropy and halo triaxiality.
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Figure 7.4: Amplitude of the variations in Re (black), σ (red) andM(re) (blue) for different
stellar populations (different line styles) for an example halo from Aquarius as a function
of angle θ, the polar angle in the plane of the major and minor axes of the halo evaluated at
1h−1kpc. The anti-correlation in the behaviour of Re and σ creates almost a cancellation
and weak variations in M(Re). We also see that variations are greater the more embedded
the stellar system similarly to the mass bias observed in WP11. This in turn explains why
the slopes estimates are still reliable under our f(E) models in triaxial potentials.



Bibliography

Agnello A., Evans N. W., 2012, ApJL, 754, L39

Allgood B., Flores R. A., Primack J. R., Kravtsov A. V., Wechsler R. H., Faltenbacher A.,
Bullock J. S., 2006, MNRAS, 367, 1781

Amorisco N. C., Evans N. W., 2011, MNRAS, 411, 2118

Angulo R. E., Springel V., White S. D. M., Jenkins A., Baugh C. M., Frenk C. S., 2012,
MNRAS, 426, 2046

Barnes J., Hut P., 1986, Nature, 324, 446

Barnes J. E., 2012, MNRAS, 425, 1104

Battaglia G., Helmi A., Tolstoy E., Irwin M., Hill V., Jablonka P., 2008, ApJL, 681, L13

Battaglia G., Tolstoy E., Helmi A., Irwin M., Parisi P., Hill V., Jablonka P., 2011, MNRAS,
411, 1013

Behroozi P. S., Conroy C., Wechsler R. H., 2010, ApJ, 717, 379

Behroozi P. S., Wechsler R. H., Conroy C., 2013, ApJ, 770, 57

Bennert V. N., Auger M. W., Treu T., Woo J.-H., Malkan M. A., 2011, ApJ, 742, 107

Bernardi M., 2009, MNRAS, 395, 1491

Bernardi M., Hyde J. B., Sheth R. K., Miller C. J., Nichol R. C., 2007, AJ, 133, 1741

Bezanson R., van Dokkum P. G., Tal T., Marchesini D., Kriek M., Franx M., Coppi P.,
2009, ApJ, 697, 1290

Blumenthal G. R., Faber S. M., Flores R., Primack J. R., 1986, ApJ, 301, 27

Boylan-Kolchin M., Ma C.-P., Quataert E., 2004, ApJL, 613, L37

Boylan-Kolchin M., Springel V., White S. D. M., Jenkins A., Lemson G., 2009, MNRAS,
398, 1150



98 BIBLIOGRAPHY

Breddels M. A., Helmi A., van den Bosch R. C. E., van de Ven G., Battaglia G., 2012,
ArXiv e-prints

Brough S., Tran K.-V., Sharp R. G., von der Linden A., Couch W. J., 2011, MNRAS, 414,
L80

Bullock J. S., Johnston K. V., 2005, ApJ, 635, 931

Collins C. A., Stott J. P., Hilton M., Kay S. T., Stanford S. A., Davidson M., Hosmer M.,
Hoyle B., Liddle A., Lloyd-Davies E., Mann R. G., Mehrtens N., Miller C. J., Nichol
R. C., Romer A. K., Sahlén M., Viana P. T. P., West M. J., 2009, Nature, 458, 603

Croton D. J., Springel V., White S. D. M., De Lucia G., Frenk C. S., Gao L., Jenkins A.,
Kauffmann G., Navarro J. F., Yoshida N., 2006, MNRAS, 365, 11

Daddi E., Renzini A., Pirzkal N., Cimatti A., Malhotra S., Stiavelli M., Xu C., Pasquali
A., Rhoads J. E., Brusa M., di Serego Alighieri S., Ferguson H. C., Koekemoer A. M.,
Moustakas L. A., Panagia N., Windhorst R. A., 2005, ApJ, 626, 680

Davis M., Efstathiou G., Frenk C. S., White S. D. M., 1985, ApJ, 292, 371

De Lucia G., Blaizot J., 2007, MNRAS, 375, 2

Diemand J., Kuhlen M., Madau P., 2007, ApJ, 657, 262

Dubinski J., 1998, ApJ, 502, 141

Dubois Y., Pichon C., Devriendt J., Silk J., Haehnelt M., Kimm T., Slyz A., 2013, MNRAS,
428, 2885

Duffy A. R., Schaye J., Kay S. T., Dalla Vecchia C., Battye R. A., Booth C. M., 2010,
MNRAS, 405, 2161

Edwards L. O. V., Patton D. R., 2012, MNRAS, 425, 287

Efstathiou G., Davis M., White S. D. M., Frenk C. S., 1985, ApJS, 57, 241

El-Zant A. A., Hoffman Y., Primack J., Combes F., Shlosman I., 2004, ApJL, 607, L75

Faber S. M., Jackson R. E., 1976, ApJ, 204, 668

Fabian A. C., 1994, ARAA, 32, 277

Fabian A. C., Mushotzky R. F., Nulsen P. E. J., Peterson J. R., 2001, MNRAS, 321, L20

Feldmann R., Carollo C. M., Mayer L., 2011, ApJ, 736, 88

Gao L., Frenk C. S., Jenkins A., Springel V., White S. D. M., 2012, MNRAS, 419, 1721



BIBLIOGRAPHY 99

Gao L., Loeb A., Peebles P. J. E., White S. D. M., Jenkins A., 2004, ApJ, 614, 17

Gao L., Navarro J. F., Frenk C. S., Jenkins A., Springel V., White S. D. M., 2012, MNRAS,
425, 2169

Gnedin O. Y., Ceverino D., Gnedin N. Y., Klypin A. A., Kravtsov A. V., Levine R., Nagai
D., Yepes G., 2011, ArXiv e-prints, 1108.5736

Gnedin O. Y., Kravtsov A. V., Klypin A. A., Nagai D., 2004, ApJ, 616, 16

Gonzalez A. H., Zabludoff A. I., Zaritsky D., 2005, ApJ, 618, 195

Guo Q., White S., Li C., Boylan-Kolchin M., 2010, MNRAS, 404, 1111

Hausman M. A., Ostriker J. P., 1978, ApJ, 224, 320

Hayashi K., Chiba M., 2012, ApJ, 755, 145

Hernquist L., 1990, ApJ, 356, 359

Hernquist L., Bouchet F. R., Suto Y., 1991, ApJS, 75, 231

Hilz M., Naab T., Ostriker J. P., 2013, MNRAS, 429, 2924

Hilz M., Naab T., Ostriker J. P., Thomas J., Burkert A., Jesseit R., 2012, MNRAS, 425,
3119

Huchra J., Davis M., Latham D., Tonry J., 1983, ApJS, 52, 89

Hyde J. B., Bernardi M., 2009, MNRAS, 394, 1978

Irwin M., Hatzidimitriou D., 1995, MNRAS, 277, 1354

Jardel J. R., Gebhardt K., 2012, ApJ, 746, 89

Johansson P. H., Naab T., Ostriker J. P., 2009, ApJL, 697, L38

Kazantzidis S., Magorrian J., Moore B., 2004, ApJ, 601, 37

Khochfar S., Silk J., 2006, MNRAS, 370, 902

Koch A., Wilkinson M. I., Kleyna J. T., Gilmore G. F., Grebel E. K., Mackey A. D., Evans
N. W., Wyse R. F. G., 2007, ApJ, 657, 241

Kolb E. W., Turner M. S., 1990, The early universe.

Kormendy J., 1977, ApJ, 218, 333

Kowalczyk K., okas E. L., Kazantzidis S., Mayer L., 2013, MNRAS, 431, 2796



100 BIBLIOGRAPHY

Kravtsov A. V., Berlind A. A., Wechsler R. H., Klypin A. A., Gottlöber S., Allgood B.,
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