65 research outputs found

    The quantum adversary method and classical formula size lower bounds

    Get PDF
    We introduce two new complexity measures for Boolean functions, or more generally for functions of the form f:S->T. We call these measures sumPI and maxPI. The quantity sumPI has been emerging through a line of research on quantum query complexity lower bounds via the so-called quantum adversary method [Amb02, Amb03, BSS03, Zha04, LM04], culminating in [SS04] with the realization that these many different formulations are in fact equivalent. Given that sumPI turns out to be such a robust invariant of a function, we begin to investigate this quantity in its own right and see that it also has applications to classical complexity theory. As a surprising application we show that sumPI^2(f) is a lower bound on the formula size, and even, up to a constant multiplicative factor, the probabilistic formula size of f. We show that several formula size lower bounds in the literature, specifically Khrapchenko and its extensions [Khr71, Kou93], including a key lemma of [Has98], are in fact special cases of our method. The second quantity we introduce, maxPI(f), is always at least as large as sumPI(f), and is derived from sumPI in such a way that maxPI^2(f) remains a lower bound on formula size. While sumPI(f) is always a lower bound on the quantum query complexity of f, this is not the case in general for maxPI(f). A strong advantage of sumPI(f) is that it has both primal and dual characterizations, and thus it is relatively easy to give both upper and lower bounds on the sumPI complexity of functions. To demonstrate this, we look at a few concrete examples, for three functions: recursive majority of three, a function defined by Ambainis, and the collision problem.Comment: Appears in Conference on Computational Complexity 200

    Robust Bell Inequalities from Communication Complexity

    Get PDF
    The question of how large Bell inequality violations can be, for quantum distributions, has been the object of much work in the past several years. We say a Bell inequality is normalized if its absolute value does not exceed 1 for any classical (i.e. local) distribution. Upper and (almost) tight lower bounds have been given in terms of number of outputs of the distribution, number of inputs, and the dimension of the shared quantum states. In this work, we revisit normalized Bell inequalities together with another family: inefficiency-resistant Bell inequalities. To be inefficiency-resistant, the Bell value must not exceed 1 for any local distribution, including those that can abort. Both these families of Bell inequalities are closely related to communication complexity lower bounds. We show how to derive large violations from any gap between classical and quantum communication complexity, provided the lower bound on classical communication is proven using these lower bounds. This leads to inefficiency-resistant violations that can be exponential in the size of the inputs. Finally, we study resistance to noise and inefficiency for these Bell inequalities

    Non-Local Box Complexity and Secure Function Evaluation

    Get PDF
    A non-local box is an abstract device into which Alice and Bob input bits xx and yy respectively and receive outputs aa and bb respectively, where a,ba,b are uniformly distributed and aoplusb=xwedgeya oplus b = x wedge y. Such boxes have been central to the study of quantum or generalized non-locality as well as the simulation of non-signaling distributions. In this paper, we start by studying how many non-local boxes Alice and Bob need in order to compute a Boolean function ff. We provide tight upper and lower bounds in terms of the communication complexity of the function both in the deterministic and randomized case. We show that non-local box complexity has interesting applications to classical cryptography, in particular to secure function evaluation, and study the question posed by Beimel and Malkin cite{BM} of how many Oblivious Transfer calls Alice and Bob need in order to securely compute a function ff. We show that this question is related to the non-local box complexity of the function and conclude by greatly improving their bounds. Finally, another consequence of our results is that traceless two-outcome measurements on maximally entangled states can be simulated with 3 nlbs, while no finite bound was previously known

    Sensitivity Lower Bounds from Linear Dependencies

    Get PDF
    Recently, using the eigenvalue techniques, H. Huang proved that every subgraph of the hypercube of dimension n induced on more than half the vertices has maximum degree at least √ n. Combined with some earlier work, this completed a proof of the sensitivity conjecture. In this work we show how to derive a proof of Huang's result using only linear dependency and independence of vectors associated with the vertices of the hypercube. Our approach leads to several improvements of the result. In particular we prove that in any induced subgraph of H n with more than half the number of vertices, there are two vertices, one of odd parity and the other of even parity, each with at least n vertices at distance at most 2. As an application we show that for any Boolean function f , the polynomial degree of f is bounded above by s 0 (f)s 1 (f), a strictly stronger statement which implies the sensitivity conjecture

    Simulating quantum correlations as a distributed sampling problem

    Full text link
    It is known that quantum correlations exhibited by a maximally entangled qubit pair can be simulated with the help of shared randomness, supplemented with additional resources, such as communication, post-selection or non-local boxes. For instance, in the case of projective measurements, it is possible to solve this problem with protocols using one bit of communication or making one use of a non-local box. We show that this problem reduces to a distributed sampling problem. We give a new method to obtain samples from a biased distribution, starting with shared random variables following a uniform distribution, and use it to build distributed sampling protocols. This approach allows us to derive, in a simpler and unified way, many existing protocols for projective measurements, and extend them to positive operator value measurements. Moreover, this approach naturally leads to a local hidden variable model for Werner states.Comment: 13 pages, 2 figure

    Simulation of bipartite qudit correlations

    Get PDF
    We present a protocol to simulate the quantum correlations of an arbitrary bipartite state, when the parties perform a measurement according to two traceless binary observables. We show that log(d)\log(d) bits of classical communication is enough on average, where dd is the dimension of both systems. To obtain this result, we use the sampling approach for simulating the quantum correlations. We discuss how to use this method in the case of qudits.Comment: 7 page

    Certificate Games

    Get PDF

    Certificate games

    Get PDF
    We introduce and study Certificate Game complexity, a measure of complexity based on the probability of winning a game where two players are given inputs with different function values and are asked to output ii such that xiyix_i\neq y_i (zero-communication setting). We give upper and lower bounds for private coin, public coin, shared entanglement and non-signaling strategies, and give some separations. We show that complexity in the public coin model is upper bounded by Randomized query and Certificate complexity. On the other hand, it is lower bounded by fractional and randomized certificate complexity, making it a good candidate to prove strong lower bounds on randomized query complexity. Complexity in the private coin model is bounded from below by zero-error randomized query complexity. The quantum measure highlights an interesting and surprising difference between classical and quantum query models. Whereas the public coin certificate game complexity is bounded from above by randomized query complexity, the quantum certificate game complexity can be quadratically larger than quantum query complexity. We use non-signaling, a notion from quantum information, to give a lower bound of nn on the quantum certificate game complexity of the OROR function, whose quantum query complexity is Θ(n)\Theta(\sqrt{n}), then go on to show that this ``non-signaling bottleneck'' applies to all functions with high sensitivity, block sensitivity or fractional block sensitivity. We consider the single-bit version of certificate games (inputs of the two players have Hamming distance 11). We prove that the single-bit version of certificate game complexity with shared randomness is equal to sensitivity up to constant factors, giving a new characterization of sensitivity. The single-bit version with private randomness is equal to λ2\lambda^2, where λ\lambda is the spectral sensitivity.Comment: 43 pages, 1 figure, ITCS202
    corecore