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THE QUANTUM ADVERSARY METHOD

AND CLASSICAL FORMULA SIZE

LOWER BOUNDS

Sophie Laplante, Troy Lee, and Mario Szegedy

Abstract. We introduce two new complexity measures for Boolean
functions, which we name sumPI and maxPI. The quantity sumPI has
been emerging through a line of research on quantum query complex-
ity lower bounds via the so-called quantum adversary method (Ambai-
nis 2002, 2003; Barnum et al. 2003; Laplante & Magniez 2004; Zhang
2005), culminating in Špalek & Szegedy (2005) with the realization that
these many different formulations are in fact equivalent. Given that
sumPI turns out to be such a robust invariant of a function, we begin
to investigate this quantity in its own right and see that it also has ap-
plications to classical complexity theory. As a surprising application we
show that sumPI

2(f) is a lower bound on the formula size, and even, up
to a constant multiplicative factor, the probabilistic formula size of f .
We show that several formula size lower bounds in the literature, specif-
ically Khrapchenko and its extensions (Khrapchenko 1971; Koutsoupias
1993), including a key lemma of H̊astad (1998), are in fact special cases
of our method. The second quantity we introduce, maxPI(f), is always
at least as large as sumPI(f), and is derived from sumPI in such a way
that maxPI

2(f) remains a lower bound on formula size. Our main re-
sult is proven via a combinatorial lemma which relates the square of
the spectral norm of a matrix to the squares of the spectral norms of its
submatrices. The generality of this lemma implies that our methods can
also be used to lower-bound the communication complexity of relations,
and a related combinatorial quantity, the rectangle partition number.
To exhibit the strengths and weaknesses of our methods, we look at the
sumPI and maxPI complexity of a few examples, including the recursive
majority of three function, a function defined by Ambainis (2003), and
the collision problem.
Keywords. Lower bounds, quantum computing, adversary method,
formula size, communication complexity.

Subject classification. 68Q17, 68Q30.



164 Laplante, Lee & Szegedy cc 15 (2006)

1. Introduction

A central and longstanding open problem in complexity theory is to prove
superlinear lower bounds for the circuit size of an explicit Boolean function.
While this seems quite difficult, a modest amount of success has been achieved
in the weaker model of formula size, a formula being simply a circuit where
every gate has fan-out at most one. The current best formula size lower bound
for an explicit function is n3−o(1) by H̊astad (1998).

In this paper we show that part of the rich theory developed around proving
lower bounds on quantum query complexity, namely the so-called quantum
adversary argument, can be brought to bear on formula size lower bounds. This
adds to the growing list of examples of how studying quantum computing has
led to new results in classical complexity, including Aaronson (2004); Kerenidis
& Wolf (2004); Laplante & Magniez (2004); Sen & Venkatesh (2001), to cite a
few.

The roots of the quantum adversary argument can be traced to the hybrid
argument of Bennett et al. (1997), who use it to show an Ω(

√
n) lower bound on

quantum search. Ambainis developed a more sophisticated adversary argument
(Ambainis 2002) and later improved this method to the full-strength quantum
adversary argument (Ambainis 2003). Further generalizations include Barnum,
Saks & Szegedy (2003) with their spectral method and Zhang (2005) with his
strong adversary method. Laplante & Magniez (2004) use Kolmogorov com-
plexity to capture the adversary argument in terms of a minimization problem.
This line of research culminates in recent work of Špalek & Szegedy (2005) who
show that in fact all the methods of Ambainis (2003); Barnum et al. (2003);
Laplante & Magniez (2004); Zhang (2005) are equivalent.

The fact that the quantum adversary argument has so many equivalent
definitions indicates that it is a natural combinatorial property of Boolean
functions which is worth investigating on its own. We give this quantity its
own name, sumPI, and adopt the following primal formulation of the method,
from Laplante & Magniez (2004); Špalek & Szegedy (2005). Letting S ⊆ {0, 1}n

and f : S → {0, 1} be a Boolean function we set

(1.1) sumPI(f) = min
p

max
x,y

f(x) 6=f(y)

1
∑

i: xi 6=yi

√

px(i)py(i)
,

where p = {px : x ∈ S} is a family of probability distributions on the indices [n].
If Qǫ(f) is the two-sided error quantum query complexity of f then Qǫ(f) =
Ω(sumPI(f)). We show further that sumPI

2(f) is a lower bound on the formula
size of f . Moreover, sumPI

2(f) generalizes several formula size lower bounds in
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the literature, specifically Khrapchenko and its extensions (Khrapchenko 1971;
Koutsoupias 1993), and a key lemma of H̊astad (1998) used on the way to
proving the current best formula size lower bounds for an explicit function.

We also introduce

KI(f) = min
α∈Σ∗

max
x,y

f(x) 6=f(y)

min
i: xi 6=yi

(K(i|x, α) + K(i|y, α)),

where K is the prefix-free Kolmogorov complexity. This formulation arises from
the quantum and randomized lower bounds of Laplante & Magniez (2004). This
formulation is especially interesting because of the intuition that it provides.
For example, it allows for a very simple proof that circuit depth d(f) ≥ KI(f),
using the Karchmer–Wigderson characterization of circuit depth (Karchmer &
Wigderson 1988).

We define a quantity closely related to 2KI, which we call maxPI, by

(1.2) maxPI(f) = min
p

max
x,y

f(x) 6=f(y)

1

maxi: xi 6=yi

√

px(i)py(i)
.

Notice that this is like sumPI but with the sum replaced by a maximum. By
definition, maxPI is larger than sumPI, but its square is still a lower bound on
formula size.

We prove our main results by transforming in two steps the problem of
proving formula size lower bounds into a problem with a more combinatorial
flavor which is easier to work with. First, we use the elegant characterization
given by Karchmer & Wigderson (1988) of formula size in terms of the com-
munication complexity of a relation. We then use the well-known property
that a successful communication protocol partitions a relation into rectangles
of a certain form. We then lower-bound the size of the smallet such rectangle
partition. A sufficient condition for a measure to lower-bound the size of such
a partition is that it is subadditive on disjoint rectangles. Our main lemma
shows that the spectral norm squared of a matrix A is such a measure.

We look at several concrete problems to illustrate the strengths and weak-
nesses of our methods. We study the height h recursive majority of three prob-
lem, R-MAJ

h
3 , and show that Qǫ(R-MAJ

h
3) = Ω(2h) and a lower bound of 4h for

the formula size. We also look at a function defined by Ambainis (2003) to sep-
arate the quantum query complexity of a function from the bound given by the
polynomial method (Beals et al. 2001). This function gives an example where
sumPI

2 can give something much better than Khraphchenko’s bound. For total
functions, maxPI and sumPI are polynomially related; however, we give an ex-
ample of a partial function f , namely the collision problem, where sumPI(f) = 2
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and maxPI(f) = Θ(
√

n). This example shows that in general maxPI is not
a lower bound on quantum query complexity, as for the collision problem
maxPI(f) ≫ Qǫ(f) = Θ(n1/3) (Aaronson & Shi 2004; Brassard et al. 1997).

1.1. Organization. In Section 2, we give the definitions, results, and nota-
tion that we use throughout the paper, and introduce the quantities sumPI,
maxPI, and KI. In Section 3 we prove some properties of sumPI and maxPI. In
Section 4, we show how sumPI and maxPI give rise to formula size lower bounds,
for deterministic and probabilistic formula size. In Section 5, we compare our
new methods with previous methods in formula size complexity. In Section 6,
we investigate the limits of our and other formula lower bound methods. Fi-
nally, in Section 7 we apply our techniques to some concrete problems.

2. Preliminaries

We use standard notation such as [n] = {1, . . . , n}, |S| for the cardinality of a
set S, and all logarithms are base 2. Hamming distance is written dH .

2.1. Complexity measures of Boolean functions. We use standard mea-
sures of Boolean functions, such as sensitivity and certificate complexity. We
briefly recall these here; see Buhrman & Wolf (2002) for more details. For a
set S ⊆ {0, 1}n and Boolean function f : S → {0, 1}, the sensitivity of f on

input x is the number of positions i ∈ [n] such that changing the value of x
in position i changes the function value. The zero-sensitivity, written s0(f), is
the maximum over x ∈ f−1(0) of the sensitivity of f on x. The one-sensitivity,
s1(f), is defined analogously. The maximum of s0(f), s1(f) is the sensitiv-

ity of f , written s(f). For block sensitivity, one considers when the function
changes not just by flipping one bit but by flipping a set (or block) of bits. A
block is sensitive on x if flipping all the bits in the block changes the value of
the function. The block sensitivity of f on input x is the maximum number of
disjoint sensitive blocks for x. The block sensitivity of f , written bs(f), is the
maximum over all inputs x of the block sensitivity of f on x.

A certificate for f on input x ∈ S is a subset I ⊆ [n] such that for any y
satisfying yi = xi for all i ∈ I it must be the case that f(y) = f(x). The zero-

certificate complexity of f , written C0(f), is the maximum over all x ∈ f−1(0)
of the minimum size certificate of x. Similarly, the one-certificate complexity

of f , written C1(f), is the maximum over all x ∈ f−1(1) of the minimum size
certificate of x. The maximum of C1(f), C0(f) is the certificate complexity of f ,
written C(f).
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2.2. Linear algebra. For a matrix A (respectively, vector v) we write AT

(resp. vT ) for the transpose of A, and A∗ (resp. v∗) for the conjugate transpose
of A. For two matrices A,B we let A◦B be the Hadamard product of A and B,
that is, (A◦B)[x, y] = A[x, y]B[x, y]. We write A ≥ B if A is entrywise greater
than B, and A � B when A − B is positive semidefinite, that is, if A − B is
Hermitian and vT (A−B)v ≥ 0 for all vectors v. We let rk(A) denote the rank
of the matrix A. We will use the notation Entrysum(A) for

∑

i,j A[i, j].
We will make extensive use of the spectral norm, denoted ‖A‖2. For a

matrix A,

‖A‖2 = {
√

λ : λ is the largest eigenvalue of A∗A}.

For a vector v, we let |v| be the ℓ2 norm of v.
We will also make use of some other matrix norms. The maximum absolute

column sum norm, written ‖A‖1, is defined as ‖A‖1 = maxj

∑

i |A[i, j]|, and the
maximum absolute row sum norm, written ‖A‖∞, is ‖A‖∞ = maxi

∑

j |A[i, j]|.
The Frobenius norm ‖A‖F =

√

∑

i,j A[i, j]2 is the ℓ2 norm of A thought of as

a long vector.
We collect a few facts about the spectral norm. These can be found in, for

example, Horn & Johnson (1999).

Proposition 2.1. Let A be an arbitrary m by n matrix. Then

(i) ‖A‖2 = max
u,v

|u∗Av|
|u||v| .

(ii) ‖A‖2
2 ≤ ‖A‖1‖A‖∞.

(iii) For nonnegative matrices A,B, if A ≤ B then ‖A‖2 ≤ ‖B‖2.

2.3. Deterministic and probabilistic formulae. A Boolean formula over
the standard basis {∨,∧,¬} is a binary tree where each internal node is labeled
with ∨ or ∧, and each leaf is labeled with a literal, that is, a Boolean variable
or its negation. The size of a formula is its number of leaves. We naturally
identify a formula with the function it computes.

Definition 2.2. Let f : {0, 1}n → {0, 1} be a Boolean function. The formula

size of f , denoted L(f), is the size of the smallest formula which computes f .
The formula depth of f , denoted d(f), is the minimum depth of a formula
computing f .
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It is clear that L(f) ≤ 2d(f); that in fact the opposite inequality d(f) ≤
O(log L(f)) also holds is a nontrivial result due to Spira (1971).

We will also consider probabilistic formulae, that is, a probability distribu-
tion over deterministic formulae. We take a worst-case notion of the size of a
probabilistic formula. This model of formula size has been studied in the series
of works Boppana (1989); Dubiner & Zwick (1997); Valiant (1984) which inves-
tigate constructing efficient deterministic monotone formulae for the majority
function by amplifying the success probability of probabilistic formulae. The
interested reader can also compare our definition with two different models of
probabilistic formula size considered in Klauck (2004).

Definition 2.3. Let {fj}j∈J be a set of functions with fj : S → {0, 1} for
each j ∈ J . For a function f : S → {0, 1}, we say that f is ǫ-approximated by
{fj}j∈J if there is a probability distribution α = {αj}j∈J over J such that for
every x ∈ S,

Prα[f(x) = fj(x)] ≥ 1 − ǫ.

In particular, if maxj L(fj) ≤ s, then we say that f is ǫ-approximated by
formulas of size s, denoted Lǫ(f) ≤ s.

Note that even if a function depends on all its variables, it is possible that
the probabilistic formula size is less than the number of variables.

2.4. Communication complexity of relations. Karchmer & Wigderson
(1988) give an elegant characterization of formula size in terms of a communica-
tion game. We will use this formulation in our proofs. This has the advantage
of letting us work in the more general setting of communication complexity
of relations and enabling us to use the combinatorial tools of communication
complexity. We now describe the setting.

Let X,Y, Z be finite sets, and R ⊆ X×Y ×Z. In the communication game
for R, Alice is given some x ∈ X, Bob is given some y ∈ Y and their goal is to
find some z ∈ Z such that (x, y, z) ∈ R, if such a z exists. A communication
protocol is a binary tree where each internal node v is labeled by either a
function av : X → {0, 1} or bv : Y → {0, 1} describing either Alice’s or Bob’s
message at that node, and where each leaf is labeled with an element z ∈ Z. A
communication protocol computes R if for all (x, y) ∈ X×Y walking down the
tree according to av, bv leads to a leaf labeled with z such that (x, y, z) ∈ R,
provided such a z exists. The communication cost D(R) of R is the height
of the smallest communication protocol computing R. The protocol partition

number CP (R) is the number of leaves in the smallest communication protocol
computing R.
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Definition 2.4. With any Boolean function f we associate the relation

Rf = {(x, y, i) : f(x) = 0, f(y) = 1, xi 6= yi}.

Theorem 2.5 (Karchmer–Wigderson). For any Boolean function f , L(f) =
CP (Rf ) and d(f) = D(Rf ).

An advantage of the communication complexity approach to formula size
is that we can use the powerful combinatorial tools available for communica-
tion complexity lower bounds. At the heart of this approach lies the idea of
combinatorial rectangles. A combinatorial rectangle is simply a set S ⊆ X ×Y
which can be expressed as S = X ′ × Y ′ for some X ′ ⊆ X and Y ′ ⊆ Y . We
say that a set S ⊆ X × Y is monochromatic with respect to the relation R if
there is a z ∈ Z such that (x, y, z) ∈ R for all (x, y) ∈ S. It can be shown
that the leaves of a successful communication protocol for R form a disjoint
covering of X × Y by rectangles monochromatic with respect to R. We let
CD(R) be the size of the smallest disjoint covering of X×Y by monochromatic
rectangles. It follows that CD(R) ≤ CP (R). For more information on commu-
nication complexity and proofs of the above results, we suggest Kushilevitz &
Nisan (1997).

2.5. sumPI and the quantum adversary method. Knowledge of quantum
computing is not needed for reading this paper; for completeness, however, we
briefly sketch the quantum query model. More background on quantum query
complexity and quantum computing in general can be found in Buhrman &
Wolf (2002); Nielsen & Chuang (2000).

As with the classical counterpart, in the quantum query model we wish to
compute some function f : S → {0, 1}, where S ⊆ Σn, and we access the
input through queries. The complexity of f is the number of queries needed
to compute f . Unlike the classical case, however, we can now make queries in
superposition. Formally, a query O corresponds to the unitary transformation

O : |i, b, z〉 7→ |i, b ⊕ xi, z〉,

where i ∈ [n], b ∈ {0, 1}, and z represents the workspace. A t-query quantum
algorithm A has the form A = UtOUt−1O · · ·OU1OU0, where the Uk are fixed
unitary transformations independent of the input x. The computation begins
in the state |0〉, and the result of the computation A is the observation of the
rightmost bit of A|0〉. We say that A ǫ-approximates f if the observation of
the rightmost bit of A|0〉 is equal to f(x) with probability at least 1 − ǫ, for
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every x. We denote by Qǫ(f) the minimum query complexity of a quantum
query algorithm which ǫ-approximates f .

Along with the polynomial method (Beals et al. 2001), one of the main tech-
niques for showing lower bounds in quantum query complexity is the quantum
adversary method (Ambainis 2002, 2003; Barnum et al. 2003; Laplante & Mag-
niez 2004; Zhang 2005). Recently, Špalek & Szegedy (2005) have shown that
all the strong versions of the quantum adversary method are equivalent, and
further that these methods can be nicely characterized as primal and dual.

We give the primal characterization as our principal definition of sumPI.

Definition 2.6. Let S ⊆ {0, 1}n and f : S → {0, 1} be a Boolean function.
For every x ∈ S let px : [n] → R be a probability distribution, that is, px(i) ≥ 0
and

∑

i px(i) = 1. Let p = {px : x ∈ S}. We define the sum probability of

indices to be

sumPI(f) = min
p

max
x,y

f(x) 6=f(y)

1
∑

i: xi 6=yi

√

px(i)py(i)
.

We will also use two versions of the dual method, both a weight scheme
and the spectral formulation. The most convenient weight scheme for us is the
“probability scheme”, given in Lemma 4 of Laplante & Magniez (2004).

Definition 2.7 (Probability scheme). Let S ⊆ {0, 1}n and f : S → {0, 1}
be a Boolean function, and X = f−1(0), Y = f−1(1). Let q be a probability
distribution on X×Y , and pA, pB be probability distributions on X,Y respec-
tively. Finally, let {p′x,i : x ∈ X, i ∈ [n]} and {p′y,i : y ∈ Y, i ∈ [n]} be families
of probability distributions on X, Y respectively. Assume that q(x, y) = 0
when f(x) = f(y). Let P range over all possible tuples (q, pA, pB, {p′x,i}x,i) of
distributions as above. Then

PA(f) = max
P

min
x,y,i

q(x,y) 6=0, xi 6=yi

√

pA(x)pB(y)p′x,i(y)p′y,i(x)

q(x, y)
.

We will also use the spectral adversary method.

Definition 2.8 (Spectral adversary). Let S ⊆ {0, 1}n and f : S → {0, 1} be
a Boolean function. Let X = f−1(0), Y = f−1(1). Let A 6= 0 be an arbitrary
|X|×|Y | nonnegative matrix. For i ∈ [n], let Ai be the matrix

Ai[x, y] =

{

0 if xi = yi,
A[x, y] if xi 6= yi.
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Then

SA(f) = max
A

‖A‖2

maxi ‖Ai‖2

.

Note that the spectral adversary method was initially defined (Barnum et al.

2003) for symmetric matrices over X ∪ Y . The above definition is equivalent:
if A is a symmetric matrix over X ∪ Y satisfying the constraint A[x, y] = 0
when f(x) = f(y), then A is of the form A =

[

0 B
BT 0

]

for some matrix B over
X×Y . Then the spectral norm of A is equal to that of B. Similarly, for any
X×Y matrix A we can form a symmetrized version of A as above preserving
the spectral norm.

We will often use the following theorem implicitly in taking the method
most convenient for the particular bound we wish to demonstrate.

Theorem 2.9 (Špalek–Szegedy). Let n ≥ 1 be an integer, S ⊆ {0, 1}n and
f : S → {0, 1}. Then

sumPI(f) = SA(f) = PA(f).

2.6. The KI and maxPI complexity measures. The definition of KI arises
from the Kolmogorov complexity adversary method (Laplante & Magniez 2004).
The Kolmogorov complexity CU(x) of a string x, with respect to a universal
Turing machine U , is the length of the shortest program p such that U(p) = x.
The complexity of x given y, denoted C(x|y), is the length of the shortest
program p such that U(〈p, y〉) = x. When U is such that the set of halting
programs is a prefix-free (no string in the set is a prefix of another in the set),
we write KU(x|y). From this point onwards, we fix U and simply write K(x|y).
For more background on Kolmogorov complexity consult Li & Vitányi (1997).

Definition 2.10. For S ⊆ {0, 1}n and f : S → {0, 1}, let

KI(f) = min
α∈{0,1}∗

max
x,y

f(x) 6=f(y)

min
i: xi 6=yi

(K(i|x, α) + K(i|y, α)).

The advantage of using concepts based on Kolmogorov complexity is that
they often naturally capture the information-theoretic content of lower bounds.
As an example of this, we give a simple proof that KI is a lower bound on circuit
depth.

Theorem 2.11. For any Boolean function f , KI(f) ≤ d(f).

Proof. Let P be a protocol for Rf . Fix x, y with different values under f ,
and let TA be a transcript of the messages sent from A to B, on input x, y.
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Similarly, let TB be a transcript of the messages sent from B to A. Let i be
the output of the protocol, with xi 6= yi. To print i given x, simulate P using
x and TB. To print i given y, simulate P using y and TA. This shows that
∀x, y : f(x) 6= f(y),∃i : xi 6= yi, K(i|x, α) + K(i|y, α) ≤ |TA| + |TB| ≤ D(Rf ),
where α is a description of A’s and B’s algorithms. �

Remark. A similar proof in fact shows that KI(f) ≤ 2N(Rf ), where N is the
nondeterministic communication complexity. Since the bound does not take
advantage of interaction between the two players, in many cases we cannot
hope to get optimal lower bounds using these techniques.

An argument similar to that in Špalek & Szegedy (2005) shows that

2KI(f) = Θ

(

min
p

max
x,y

f(x) 6=f(y)

1

maxi: xi 6=yi

√

px(i)py(i)

)

.

Notice that the right hand side of the equation is identical to the definition
of sumPI, except that the sum in the denominator is replaced by a maximum.
This led us to define the complexity measure maxPI, in order to get stronger
formula size lower bounds.

Definition 2.12. Let S ⊆ {0, 1}n and f : S → {0, 1}. For every x ∈ S let
px : [n] → R be a probability distribution. Let p = {px : x ∈ S}. We define the
maximum probability of indices to be

maxPI(f) = min
p

max
x,y

f(x) 6=f(y)

1

maxi: xi 6=yi

√

px(i)py(i)
.

It can be easily seen from the definitions that sumPI(f) ≤ maxPI(f) for
any f . The following lemma is also straightforward from the definitions:

Lemma 2.13. If S ′ ⊆ S and f ′ : S ′ → {0, 1} is a domain restriction of f : S →
{0, 1} to S ′, then sumPI(f ′) ≤ sumPI(f) and maxPI(f ′) ≤ maxPI(f).

3. Properties of sumPI and maxPI

3.1. Properties of sumPI. Although in general, as we shall see, sumPI gives
weaker formula size lower bounds than maxPI, the measure sumPI has several
nice properties which make it more convenient to use in practice.

The next lemma shows that sumPI behaves like most other complexity mea-
sures with respect to composition of functions:
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Lemma 3.1. Let g1, . . . , gn be Boolean functions, and h : {0, 1}n → {0, 1}. If
sumPI(gj) ≤ a for 1 ≤ j ≤ n and sumPI(h) ≤ b, then for f = h(g1, . . . , gn),
sumPI(f) ≤ ab.

Proof. Let p be an optimal family of distribution functions associated with h,
and pj be optimal families of distribution functions associated with gj. For
x = (x1, . . . , xn) we write g(x) for the string (g1(x1), . . . , gn(xn)) ∈ {0, 1}n.
Define the distribution function

qx(i) =
∑

j∈[n]

pg(x)(j)pj,x(i).

Consider x, y with f(x) 6= f(y). It is enough to show that

(3.2)
∑

i: xi 6=yi

√

∑

j∈[n]

pg(x)(j)pj,x(i)

√

∑

j∈[n]

pg(y)(j)pj,y(i) ≥
1

ab
.

By Cauchy–Schwarz, the left hand side of (3.2) is greater than or equal to

(3.3)
∑

i: xi 6=yi

∑

j∈[n]

√

pg(x)(j)pj,x(i)
√

pg(y)(j)pj,y(i)

=
∑

j∈[n]

(
√

pg(x)(j)pg(y)(j)
∑

i:xi 6=yi

√

pj,x(i)pj,y(i)
)

.

By the definition of pj, we have
∑

i: xi 6=yi

√

pj,x(i)
√

pj,y(i) ≥ 1/a whenever
gj(x) 6= gj(y). Thus we can estimate the expression in (3.3) from below by

1

a

∑

j: gj(x) 6=gj(y)

√

pg(x)(j)pg(y)(j).

By the definition of p we can estimate the sum (without the 1/a coefficient) in
the above expression from below by 1/b, which finishes the proof. �

Another advantage of working with sumPI complexity is the following very
powerful lemma of Ambainis (2003) which makes it easy to lower-bound the
sumPI complexity of iterated functions.

Definition 3.4. Let f : {0, 1}n → {0, 1} be any Boolean function. We define
the dth iteration of f , written fd : {0, 1}nd → {0, 1}, inductively as f 1(x) =
f(x) and

fd+1(x) = f(fd(x1, . . . , xnd), fd(xnd+1, . . . , x2nd), . . . , fd(x(n−1)nd+1, . . . , xnd+1)).
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Lemma 3.5 (Ambainis). Let f be any Boolean function and fd the dth itera-
tion of f . Then sumPI(fd) ≥ (sumPI(f))d.

Combining this with Lemma 3.1, we get:

Corollary 3.6. Let f be any Boolean function and fd the dth iteration of f .
Then sumPI(fd) = (sumPI(f))d.

Ambainis shows that for total Boolean functions the square root of block
sensitivity is a lower bound on the sumPI complexity (Ambainis 2002). This,
together with Lemma 2.13 and Lemma 3.1 and the results of Beals et al. (2001)
and Nisan & Szegedy (1994), implies the following:

Lemma 3.7 (Ambainis). For total Boolean functions the sumPI complexity is
in polynomial relation with the various (deterministic, randomized, quantum)
decision tree complexities and the Fourier degree of the function.

3.2. Properties of maxPI. One thing that makes sumPI so convenient to use
is that it dualizes (Špalek & Szegedy 2005). In this section we partially dualize
the expression maxPI. The final expression remains a minimization problem,
but we minimize over discrete index selection functions, instead of families
of probability distributions, which makes it much more tractable. Still, we
remark that maxPI can take exponential time (in the size of the truth table
of f), whereas sumPI takes polynomial time in the size of the truth table of f
to compute by reduction to semidefinite programming.

Definition 3.8. Let f : {0, 1}n → {0, 1} be a Boolean function, X=f−1(0),
and Y =f−1(1). For i ∈ [n] let Di be an |X|×|Y | matrix defined by Di[x, y] =
1−δxi,yi

. We call the set {Pi}i∈[n] of n Boolean matrices index selection functions

if

(i)
∑

i Pi = E, where E[x, y] = 1 for every x ∈ X, y ∈ Y (informally: for
every x ∈ X, y ∈ Y we select a unique index),

(ii) Pi ≤ Di (informally: for every x ∈ X, y ∈ Y the index i we select is such
that xi 6= yi).

Notice that index selection functions correspond to partitioning X×Y in
such a way that if x, y are in the ith part, then xi 6= yi.
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Theorem 3.9 (Spectral adversary version of maxPI). Let f,X, Y be as in the
previous definition. Let A be an arbitrary |X|×|Y | nonnegative matrix satis-
fying A[x, y] = 0 whenever f(x) = f(y). Then

maxPI(f) = min
{Pi}i

max
A

‖A‖2

maxi ‖A ◦ Pi‖2

,

where {Pi}i runs through all index selection functions.

Proof. For a fixed family p = {px} of probability distributions we define
the index selection function Pi[x, y] = 1 if i = argmaxi: xi 6=yi

√

px(i)py(i), and 0
otherwise. Here argmax is the smallest argument for which the expression
attains its maximal value. Consider the definition of maxPI:

(3.10) max
x,y

f(x) 6=f(y)

1

maxi: xi 6=yi

√

px(i)py(i)
.

With this choice of index selection functions, the denominator in (3.10) becomes
equal to

∑

i: xi 6=yi

√

px(i)py(i)Pi[x, y]. If we replace this particular choice of in-

dex selection functions with any other, the value of
∑

i: xi 6=yi

√

px(i)py(i)Pi[x, y]
will not increase. Thus we can rewrite (3.10) as

max
x,y

f(x) 6=f(y)

1

max{Pi}i

∑

i: xi 6=yi

√

px(i)py(i)Pi[x, y]
,

where this time {Pi}i runs through all index selection functions. Thus

(3.11) maxPI(f) =
1

maxp minx,y: f(x) 6=f(y) max{Pi}i

∑

i: xi 6=yi

√

px(i)py(i)Pi[x, y]
.

Notice that in (3.11) the minimum is interchangeable with the second max-
imum. The reason is that for a fixed p there is a fixed system {Pi[x, y]}i that
maximizes

∑

i: xi 6=yi

√

px(i)py(i)Pi[x, y] for all x, y with f(x) 6= f(y). Thus

maxPI(f) =
1

max{Pi}i
maxp minx,y: f(x) 6=f(y)

∑

i: xi 6=yi

√

px(i)py(i)Pi[x, y]
.

Following the proof of the main theorem of Špalek and Szegedy we can create
the semidefinite version of the above expression. The difference here, however,
is that we have to treat {Pi}i (the index selection functions) as a “parameter”
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of the semidefinite system over which we have to maximize. Unfortunately it
also appears in the final expression.

Semidefinite version of maxPI. For fixed {Pi}i let µ′
max be the solution of

the following semidefinite program:

maximize µ′

subject to (∀i) Ri � 0,
∑

i Ri ◦ I = I,
∑

i Ri ◦ Pi ≥ µ′F.

Define µmax as the maximum of µ′
max, where Pi (1 ≤ i ≤ n) run through all

index selection functions. Then maxPI = 1/µmax.
We can dualize the above program and simplify it in the same way as in

Špalek and Szegedy for the case of sumPI with the only change that Di needs to
be replaced with Pi, and that we have to minimize over all choices of {Pi}i. �

4. Formula size lower bounds

We transform in two steps the problem of proving lower bounds on formula
size into a combinatorial problem which is easier to work with. First we apply
the theorem of Karchmer and Wigderson, Theorem 2.5, which gives an exact
characterization of the formula size of f in terms of the communication com-
plexity of a relation associated with f . We then use the well-known fact that
the size of the smallest partition of a relation into monochromatic rectangles is
a lower bound on the smallest number of leaves in a communication protocol
for the relation. We then lower-bound the size of such a partition.

A natural way to lower-bound the size of the smallest partition is to find
a measure which is subadditive on rectangles. Then the measure of the whole
space divided by the size of the largest rectangle in the partition will lower-
bound the number of rectangles in the partition. In the next section we show
our key lemma that the squared spectral norm of a matrix is such a measure.

4.1. Key combinatorial lemma. We first prove a combinatorial lemma
which is the key to our main result. This lemma relates the spectral norm
squared of a matrix to the squared spectral norm of its submatrices, and may
also be of independent interest.

Let X and Y be finite sets. A set system S (over X×Y ) will be called
a covering if

⋃

S∈S S = X×Y . Further, S will be called a partition if S is a
covering and the intersection of any two distinct sets from S is empty. A rect-

angle (over X×Y ) is an arbitrary subset of X×Y of the form X0×Y0 for some
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X0 ⊆ X and Y0 ⊆ Y . A set system R will be called a rectangle partition if R
is a partition and each R ∈ R is a rectangle. For a subset S ⊆ X×Y we define

(4.1) AS[x, y] =

{

A[x, y] if (x, y) ∈ S,
0 otherwise.

We are now ready to state the lemma:

Lemma 4.2. Let A be an arbitrary |X|×|Y | matrix (possibly with complex en-
tries), and R a partition of X×Y into rectangles. Then ‖A‖2

2 ≤
∑

R∈R ‖AR‖2
2.

Proof. By Proposition 2.1, ‖A‖2 = maxu,v |u∗Av|, where the maximum is
taken over all unit vectors u, v. Let u, v be the unit vectors realizing this
maximum. Then we have

‖A‖2 = |u∗Av| =
∣

∣

∣
u∗

(

∑

R∈R

AR

)

v
∣

∣

∣

∣

∣

∣

∑

R∈R

u∗ARv
∣

∣

∣
.

As each R ∈ R is a rectangle, it can be expressed as R = X0 × Y0 for some
X0 ⊆ X and Y0 ⊆ Y . Let uR[x] = u[x] if x ∈ X0 and 0 otherwise, and similarly
vR[y] = v[y] if y ∈ Y0 and 0 otherwise. Notice that {uR}R∈R do not in general
form a partition of u. We now have

‖A‖2 =
∣

∣

∣

∑

R∈R

u∗
RARvR

∣

∣

∣
≤

∑

R∈R

|u∗
RARvR| ≤

∑

R∈R

‖AR‖2|uR||vR|

by Proposition 2.1. Applying the Cauchy–Schwarz inequality, we obtain

‖A‖2 ≤
(

∑

R∈R

‖AR‖2
2

)1/2(∑

R∈R

|uR|2|vR|2
)1/2

.

Now it simply remains to observe that

∑

R∈R

|uR|2|vR|2 =
∑

R∈R

∑

(x,y)∈R

u[x]2v[y]2 = |u|2|v|2 = 1,

as R is a partition of X×Y . �

4.2. Deterministic formulae. In this section, we prove our main result
that maxPI is a lower bound on formula size. We first identify two natural
properties which are sufficient for a function to be a formula size lower bound.
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Definition 4.3. A function µ : 2X×Y → R
+ is called a rectangle measure if

the following properties hold.

(i) (Subadditivity) For any rectangle partition R of X×Y , µ(X×Y ) ≤
∑

R∈R µ(R).

(ii) (Monotonicity) For any rectangle R ⊆ X×Y and subset S ⊆ X×Y , if
R ⊆ S then µ(R) ≤ µ(S).

Lemma 4.2 and Proposition 2.1(iii) imply that for any |X|×|Y | matrix A
with nonnegative entries, S 7→ ‖AS‖2

2 is a rectangle measure. Other examples
include the rank of AS for any matrix A over any field (see Section 5.4), and
the µ-rectangle size bounds of Karchmer et al. (1995) (see Section 5.5).

Let S1,S2 be two families of sets over the same universe. We say that S1

is embedded in S2 (S1 ≺ S2) if for every S ∈ S1 there is an S ′ ∈ S2 such that
S ⊆ S ′.

Proposition 4.4. Let µ be a rectangle measure over 2X×Y , S be a covering
of X×Y and R a rectangle partition of X×Y such that R ≺ S. Then |R| ≥
µ(X×Y )/maxS∈S µ(S).

The proof follows by subadditivity and monotonicity of µ.

Theorem 4.5 (Main Theorem).

sumPI
2(f) ≤ maxPI

2(f) ≤ CD(Rf ) ≤ L(f).

Proof. We have seen that sumPI
2(f) ≤ maxPI

2(f), and CD(Rf ) ≤ L(f)
follows from the Karchmer–Wigderson communication game characterization
of formula size, thus we focus on the inequality maxPI

2(f) ≤ CD(Rf ).
Let R be a monochromatic rectangle partition of Rf such that |R| =

CD(Rf ), and let A be an arbitrary |X|×|Y | matrix with nonnegative real en-
tries. For R ∈ R let color(R) be the least index c such that xc 6= yc for all
(x, y) ∈ R. By assumption each R is monochromatic, hence such a color exists.
Define

Sc =
⋃

color(R)=c

R.

Then R is naturally embedded in the covering {Sc}c∈[n]. For any S ⊆ X×Y ,
let µA(S) = ‖AS‖2

2. By Lemma 4.2 and Proposition 2.1(iii), µA is a rectangle
measure. Hence by Proposition 4.4,

max
A

‖A‖2
2

maxc ‖ASc
‖2

2

≤ CD(Rf ).
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We have exhibited a particular index selection function, the {Sc}c, for which
this inequality holds, thus it also holds for maxPI

2(f) which is the minimum
over all index selection functions. �

4.3. Probabilistic formulae. The properties of sumPI allow us to show that
it can be used to lower-bound the probabilistic formula size.

Lemma 4.6. Let ǫ < 1/2. If f : S → {0, 1} is ǫ-approximated by functions
{fj}j∈J with sumPI(fj) ≤ s for every j ∈ J , then sumPI(f) ≤ s/(1 − 2ǫ).

Proof. By assumption there is a probability distribution α = {αj}j∈J such
that Pr[f(x) = fj(x)] ≥ 1 − ǫ. Thus for a fixed x ∈ S, letting Jx = {j ∈ J :
f(x) = fj(x)}, we have

∑

j∈Jx
αj ≥ 1 − ǫ. Hence for any x, y ∈ S we have

∑

j∈Jx∩Jy
αj ≥ 1− 2ǫ. For convenience, we write Jx,y for Jx ∩ Jy. As sumPI(fj)

≤ s there is a family of probability distributions pj such that whenever fj(x) 6=
fj(y),

∑

i: xi 6=yi

√

pj,x(i)pj,y(i) ≥ 1/s.

Define px(i) =
∑

j∈J αjpj,x(i). Let x, y be such that f(x) 6= f(y). Then

∑

i: xi 6=yi

√

px(i)py(i) =
∑

i: xi 6=yi

√

∑

j∈J

αjpj,x(i)

√

∑

j∈J

αjpj,y(i)

≥
∑

i: xi 6=yi

√

∑

j∈Jx,y

αjpj,x(i)

√

∑

j∈Jx,y

αjpj,y(i)

≥
∑

i: xi 6=yi

∑

j∈Jx,y

√

αjpj,x(i)
√

αjpj,y(i)

=
∑

j∈Jx,y

(

αj

∑

i: xi 6=yi

√

pj,x(i)pj,y(i)
)

≥ 1 − 2ǫ

s
,

where for the third step we have used the Cauchy–Schwarz inequality. �

This lemma immediately shows that the sumPI method gives lower bounds
on probabilistic formula size.

Theorem 4.7. Let S ⊆ {0, 1}n and f : S → {0, 1}. Then for any ǫ < 1/2,

L
ǫ(f) ≥ ((1 − 2ǫ)sumPI(f))2 .
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Proof. Suppose that {fj}j∈J gives an ǫ-approximation to f . Using Lemma
4.6 in the contrapositive implies that there exists some j ∈ J with sumPI(fj) ≥
(1−2ǫ)sumPI(f). Theorem 4.5 then implies L(fj) ≥ ((1 − 2ǫ)sumPI(f))2, which
gives the statement of the theorem. �

5. Comparison among methods

In this section we look at several formula size lower bound techniques in the
literature and see how they compare with our methods. A bottleneck in formula
size lower bounds seems to have been to go beyond methods which only consider
pairs (x, y) with f(x) 6= f(y) which have Hamming distance 1. In fact, the
methods of Khrapchenko, Koutsoupias, and a lemma of H̊astad can all be seen
as special cases of the sumPI method where only pairs of Hamming distance 1
are considered.

5.1. Khrapchenko’s method. One of the oldest and most general tech-
niques available for showing formula size lower bounds is Khrapchenko’s
method (Khrapchenko 1971), originally used to give a tight Ω(n2) lower bound
for the parity function. This method considers a bipartite graph whose left
vertices are the 0-inputs to f and whose right vertices are the 1-inputs. The
bound given is the product of the average degree of the right and left hand
sides.

Theorem 5.1 (Khrapchenko). Let S ⊆ {0, 1}n and f : S → {0, 1}. Let
A ⊆ f−1(0) and B ⊆ f−1(1). Let C be the set of pairs (x, y) ∈ A × B with
Hamming distance 1, that is, C = {(x, y) ∈ A×B : dH(x, y) = 1}. Then
L(f) ≥ sumPI(f)2 ≥ |C|2/|A||B|.

Khrapchenko’s method can easily be seen as a special case of the probability
scheme. Letting A,B,C be as in the statement of the theorem, we set up our
probability distributions as follows:

◦ pA(x) =

{

1/|A| if x ∈ A,
0 otherwise,

◦ pB(x) =

{

1/|B| if x ∈ B,
0 otherwise,

◦ q(x, y) =

{

1/|C| if (x, y) ∈ C,
0 otherwise,
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◦ p′x,i(y) =

{

1 if (x, y) ∈ C and xi 6= yi,
0 otherwise.

Note that this is a probability distribution, as for every x there is only one
y such that (x, y) ∈ C and xi 6= yi. By Theorems 2.9 and 4.5,

L(f) ≥ min
x,y,i

q(x,y) 6=0
xi 6=yi

pA(x)pB(y)p′x,i(y)p′y,i(x)

q2(x, y)
=

|C|2
|A||B| ,

where the expression in the middle is a lower bound on sumPI(f)2.
The setting of Ambainis’ unweighted method is similar to Khrapchenko’s,

but it also allows pairs x, y that have Hamming distance larger than 1. However,
instead of considering average degree, it is stated in terms of minimum degree
and thus, strictly speaking, does not generalize Khrapchenko’s method.

5.2. The Koutsoupias bound. Koutsoupias (1993) extends Khrapchenko’s
method with a spectral version. The weights are always 1 for pairs of inputs
with different function values that have Hamming distance 1, and 0 everywhere
else.

Theorem 5.2 (Koutsoupias). Let f : {0, 1}n → {0, 1}, and let A ⊆ f−1(0)
and B ⊆ f−1(1). Let C = {(x, y) ∈ A×B : dH(x, y) = 1}. Let Q be a |B|×|A|
matrix Q[x, y] = C(x, y) where C is identified with its characteristic function.
Then L(f) ≥ sumPI(f)2 ≥ ‖Q‖2

2.

Proof. The bound follows easily from the spectral version of sumPI. Let
Q be as in the statement of the theorem. Notice that since we only consider
pairs with Hamming distance 1, for every row and column of Qi there is at
most one nonzero entry, which is at most 1. Thus by Proposition 2.1 we have
‖Qi‖2

2 ≤ ‖Qi‖1‖Qi‖∞ ≤ 1. The theorem now follows from Theorem 4.5. �

5.3. H̊astad’s method. When we hit a Boolean function by a random re-
striction where each variable is left free with probability p, we expect the for-
mula size of the resulting function to shrink from L to O(pL). Subbotovskaya
was the first to notice that formulae actually shrink more. The shrinkage ex-

ponent of Boolean formulae is the supremum over all γ such that any Boolean
formula shrinks from size L to expected size O(pγL). Determining the shrink-
age exponent is important, as Andreev (1987) defined a function f whose for-
mula size is L(f) = n1+γ. H̊astad (1998) shows the shrinkage exponent of
Boolean formulae is 2 and thereby obtains an n3−o(1) formula size lower bound,
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the largest bound known for an explicit function. On the way to this result,
H̊astad proves an intermediate lemma which gives a lower bound on formula
size that depends on the probability that restrictions of a certain form occur.
He proves that this lemma is a generalization of Khrapchenko’s method; we
prove that H̊astad’s lemma is in turn a special case of sumPI. Since H̊astad’s
method uses random restrictions, which at first glance seems completely differ-
ent from adversary methods, it comes as a surprise that it is in fact a special
case of our techniques.

Definition 5.3. For any function f : {0, 1}n → {0, 1}:

(i) A restriction is a string in {0, 1, ⋆}n where ⋆ means the variable is left free,
and 0 or 1 mean the variable is set to the constant 0 or 1, respectively.

(ii) The restricted function f |ρ is the function that remains after the non-⋆
variables in ρ are fixed.

(iii) Rp is the distribution on random restrictions to the variables of f obtained
by setting each variable, independently, to ⋆ with probability p, and to 0
or 1 each with probability (1 − p)/2.

(iv) A filter ∆ is a set of restrictions which has the property that if ρ ∈ ∆,
then every ρ′ obtained by fixing one of the ⋆s to a constant is also in ∆.

(v) When p is known from the context, for any event E and any filter ∆ we
write Pr[E|∆] to mean Prρ∈Rp

[E | ρ ∈ ∆].

Theorem 5.4 (H̊astad 1998, Lemma 4.1). Let f : {0, 1}n → {0, 1} and ∆ be
a filter. Let A be the event that a random restriction in Rp reduces f to the
constant 0, B be the event that a random restriction in Rp reduces f to the
constant 1, and let C be the event that a random restriction ρ ∈ Rp is such
that f |ρ is a single literal. Then

L(f) ≥ Pr[C|∆]2

Pr[A|∆] Pr[B|∆]

(

1 − p

2p

)2

.

Proof. We show that the theorem follows from the probability scheme (Def-
inition 2.7). In this proof we only consider restrictions obtained from Rp that
are in the filter ∆. We also abuse notation and use A and B to mean the sets
of restrictions in ∆ which contribute with nonzero probability to the events A
and B respectively.
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Implicit in H̊astad’s proof is the following relation between restrictions in
A and B. For every ρ ∈ C ∩ ∆, f |ρ reduces to a single literal, that is, for
every ρ ∈ C ∩ ∆, there is an i such that f |ρ = xi (or ¬xi if the variable is
negated). Define ρb to be ρ where xi is set to b, for b ∈ {0, 1} (set xi to 1−b if
the variable is negated). To fit into the framework of the probability scheme,
let ρb be ρb where all remaining ⋆s are set to 1. This does not change the value
of the function, because it is already constant on ρb. Then we say that ρ0, ρ1

are in the relation.
We define a probability scheme for this relation. For every σ, τ in the

relation, with σ fixing the function value to 0, and τ fixing the function value
to 1, we let pA(σ) = Pr[σ]/Pr[A|∆] and pB(τ) = Pr[τ ]/Pr[B|∆]. For every pair
ρ0, ρ1 in the relation, where ρ ∈ C ∩ ∆, f |ρ = xi or ¬xi, let

p′
ρ0,i

(ρ1) = 1,

p′
ρ1,i

(ρ0) = 1,

q(ρ0, ρ1) =
Pr[ρ]

Pr[C|∆]
.

The probabilities are 0 on all other inputs. We can easily verify that the
probabilities sum to 1. For p′, notice that the Hamming distance between
ρ0 and ρ1 is 1, so when ρb and i are fixed, there is only a single ρ1−b with
probability 1.

By Theorems 2.9 and 4.5,

L(f) ≥ pA(x)pB(y)p′y,i(x)p′x,i(y)

q(x, y)2

=
Pr[ρ0]

Pr[A|∆]

Pr[ρ1]

Pr[B|∆]

(

Pr[C|∆]

Pr[ρ]

)2

.

Finally, notice that Pr[ρ] = 2p
1−p

Pr[ρb]. �

Remark. H̊astad actually defines f |ρ to be the result of reducing the formula
for f (not the function) by applying a sequence of reduction rules, for each
restricted variable. So there is a subtlety here about whether f |ρ denotes
the reduced formula, or the reduced function, and the probabilities might be
different if we are in one setting or the other. However, both in his proof and
ours, the only thing that is used about the reduction is that if the formula or
function reduces to a single literal, then fixing this literal to 0 or to 1 reduces
the function to a constant. Therefore, both proofs go through for both settings.
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5.4. Razborov’s method. Razborov (1990) proposes a formula size lower
bound technique using matrix rank:

Theorem 5.5 (Razborov). Let R ⊆ X × Y × Z be a relation and let R be
a partition of X × Y into monochromatic rectangles satisfying |R| = CD(R).
Let S be a covering of X × Y such that R ≺ S. Then

CD(R) ≥ max
A 6=0

rk(A)

maxS∈S rk(AS)
.

It can be easily verified that the function S 7→ rk(AS) is a rectangle measure,
thus this theorem follows from Proposition 4.4. Razborov uses Theorem 5.5 to
show superpolynomial monotone formula size lower bounds, but also shows that
the method becomes trivial (limited to O(n) bounds) for regular formula size
(Razborov 1992). An interesting difference between matrix rank and spectral
norm is that rk(A+B) ≤ rk(A)+rk(B) holds for any two matrices A,B, while
a necessary condition for subadditivity of the squared spectral norm is that
A,B be disjoint rectangles.

5.5. Karchmer, Kushilevitz, and Nisan. In this section we discuss two
methods proposed by Karchmer, Kushilevitz & Nisan (1995) for proving lower
bounds on the communication complexity of relations. Our presentation here
differs from the original one in order to highlight similarities with the present
discussion.

Both of the techniques of Karchmer et al. (1995) arise from linear pro-
gram relaxations of integer program formulations of communication complex-
ity bounds. First they look at nondeterministic complexity, which corresponds
to the cover number of a relation, CN(R), that is, the minimum number of
monochramatic relations needed to cover the relation R. Writing the linear
program relaxation of the cover number, they obtain the following bound:

Theorem 5.6. Let R ⊆ X × Y × Z be a relation and let R be a partition
of X × Y into monochromatic rectangles satisfying |R| = CD(R). Let S be a
covering of X × Y such that R ≺ S. Then

CD(R) ≥ max
A 6=0

‖A‖2
F

maxS∈R ‖AS‖2
F

.

Notice that this bound looks the same as ours with the spectral norm re-
placed by the Frobenius norm. It is easy to see that the Frobenius norm squared
is both subbadditive and monotone and thus a rectangle measure in the sense of
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Definition 4.3. They show some other interesting properties of this measure: its
logarithm characterizes (up to a log n factor) nondeterministic communication
complexity, and this measure satisfies a direct sum property.

Karchmer, Kushilevitz, and Nisan then turn to formulate the rectangle par-
tition bound as an integer programming problem, and investigate its relaxation
as a linear program. They show that, when dualized, this bound has the fol-
lowing form:

Theorem 5.7 (Karchmer–Kushilevitz–Nisan). Let R ⊆ X × Y ×Z be a rela-
tion and let R be a partition of X×Y into monochromatic rectangles satisfying
|R| = CD(R). Then

CD(R) ≥ max
A 6=0

Entrysum(A)

maxS∈R Entrysum(AS)
.

Notice that S 7→ Entrysum(AS) for a matrix A is again a subadditive
measure. The essential difference between these two methods is that in the
latter, one can use negative weights in the matrix A. This allows one to prove
larger formula size lower bounds using the second theorem, but it also means
that this measure does not have the monotonicity property, and so one must
be careful in checking the weights of all monochromatic rectangles. They show
that this bound is larger than the bound given by Khrapchenko’s method, but
cannot prove lower bounds larger than n2.

6. Limitations

6.1. Hamming distance 1 techniques. We show that the bounds for a
function f given by Khrapchenko’s and Koutsoupias’ method, and by H̊astad’s
lemma, are upper-bounded by the product of the zero-sensitivity and the one-
sensitivity of f . We will later use this bound to exhibit a function on n bits
for which the best lower bound given by these methods is n and for which an
≈ n1.32 bound is provable by sumPI

2.

Lemma 6.1. The bound given by the Khrapchenko method (Theorem 5.1),
Koutsoupias’ method (Theorem 5.2), and H̊astad’s lemma (Theorem 5.4) for a
function f are at most s0(f)s1(f) ≤ s2(f).

Proof. We prove the lemma in two parts. We first show that the Ham-
ming distance 1 version of the spectral adversary method is upper-bounded
by s0(f)s1(f). We then show that the Hamming distance 1 version of the
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spectral adversary method gives at least as large bounds as the methods of
Khrapchenko, Koutsoupias, and H̊astad’s lemma.

Let A be a nonnegative matrix with nonzero entries only in positions (x, y)
where f(x) = 0, f(y) = 1 and the Hamming distance between x, y is 1. We
first show that

(6.2) max
A

‖A‖2
2

maxi ‖Ai‖2
2

≤ s0(f)s1(f).

Let amax be the largest entry in A. Since A can have at most s0(f) nonzero
entries in any row, and at most s1(f) nonzero entries in any column, by Propo-
sition 2.1(i) we have

‖A‖2
2 ≤ ‖A‖1‖A‖∞ ≤ a2

maxs0(f)s1(f).

On the other hand, for some i, the entry amax appears in Ai, and so by Propo-
sition 2.1(i), ‖Ai‖2

2 ≥ a2
max. Then (6.2) follows, and completes the first part of

the proof.
We now turn to the second part of the proof: that the left hand side of

(6.2) is larger than the bounds given by the three methods in the statement
of the theorem. That it is more general than Koutsoupias’ method is clear.
We have seen that both Khrapchenko’s method and H̊astad’s lemma can be
proven by the Hamming distance 1 version of the probability schemes method,
Definition 2.7. Thus it now suffices to see that the left hand side of (6.2) is at
least as large as the bound in the probability schemes method where q(x, y) is
only positive if the Hamming distance between x, y is 1. Given the probability
distributions q, pA, pB, define the matrix A[x, y] = q(x, y)/

√

pA(x)pB(y). By

Proposition 2.1(i), ‖A‖2 ≥ 1, witnessed by the unit vectors u[x] =
√

pA(x) and

v[y] =
√

pB(y). As each reduced matrix Ai has at most one nonzero entry in
each row and column, by Proposition 2.1(ii) we have

max
i

‖Ai‖2
2 ≤ max

x,y

q2(x, y)

pA(x)pB(y)
.

Thus we have shown

max
pA,pB ,q

min
x,y

pA(x)pB(y)

q2(x, y)
≤ max

A

‖A‖2
2

maxi ‖Ai‖2
2

. �

The only reference to the limitations of these methods we are aware of is
Schürfeld (1983), who shows that Khrapchenko’s method cannot prove bounds
greater than C0(f)C1(f).
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6.2. Limitations of sumPI and maxPI. The limitations of the adversary
method are well known (Ambainis 2002; Laplante & Magniez 2004; Špalek &
Szegedy 2005; Szegedy 2003; Zhang 2005). Špalek and Szegedy, in unifying
the adversary methods, also give the most elegant proof of their collective
limitation. The same proof also shows that the same limitations hold for the
maxPI measure.

Lemma 6.3. Let f : S → {0, 1} with S ⊆ {0, 1}n be any Boolean function.
Then

maxPI(f) ≤ min{
√

nC0(f),
√

nC1(f)}.
Furthermore, if f is total, that is, if S = {0, 1}n, then

maxPI(f) ≤
√

C0(f)C1(f).

Proof. Assume that f is total. Take x, y such that f(x) = 0 and f(y) = 1.
We choose any 0-certificate B0 for x and any 1-certificate B1 for y and let
px(i) = 1/|B0| for all i ∈ B0 and py(i) = 1/|B1| for all i ∈ B1. As f is
total, there exists j ∈ B0 ∩ B1 with xj 6= yj. For this j we have px(j)py(j) ≥
1/|B0||B1| ≥ 1/C0(f)C1(f), thus mini: xi 6=yi

1/px(i)py(i) ≥ C0(f)C1(f).
The case where f is partial follows similarly. We no longer know that

B0 ∩ B1 6= ∅, thus we put a uniform distribution over a 0-certificate of x and
the uniform distribution over [n] on y or vice versa. �

This lemma implies that sumPI and maxPI are polynomially related for total f .

Corollary 6.4. Let f be a total Boolean function. Then

maxPI(f) ≤ sumPI
4(f).

Proof. By Ambainis (2002, Thm. 5.2) we know that
√

bs(f) ≤ sumPI(f).

As f is total, by the above lemma we know that maxPI(f) ≤
√

C0(f)C1(f).
This in turn is smaller than bs(f)2 as C(f) ≤ s(f)bs(f) (Nisan 1991). The
statement follows. �

Besides the certificate complexity barrier, another serious limitation of the
sumPI method occurs for partial functions where every positive input is far in
Hamming distance from every negative input. Thus for example, if for any pair
x, y where f(x) = 1 and f(y) = 0 we have dH(x, y) ≥ ǫn, then by putting the
uniform distribution over all input bits it follows that sumPI(f) ≤ 1/ǫ. The
measure maxPI does not face this limitation as there we still only have one term
in the denominator.
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Figure 6.1: Summary of the methods and their limitations. The containments de-
noted by solid lines hold for total as well as partial functions. All containments are
strict.

Following this line of thinking, we can give an example of a partial function
f where maxPI(f) ≫ sumPI(f). Such an example is the collision problem (see
Section 7.3), as here any positive and negative inputs must differ on at least
n/2 positions. Another family of examples comes from property testing, where
the promise is that the input either has some property, or that it is ǫ-far from
having the property.

7. Concrete lower bounds

The quantum adversary argument has been used to prove lower bounds for a
variety of problems. Naturally, all of these lower bounds carry over to formula
size lower bounds. In this section we present some new lower bounds, in order
to highlight the strengths and weaknesses of maxPI and sumPI.

7.1. Recursive majorities. As an example of applying sumPI, we look at
the recursive majority of three functions. We let R-MAJ

h
3 : {0, 1}3h → {0, 1}

be the function computed by a complete ternary tree of depth h where every
internal node is labeled by a majority gate and the input is given at the leaves.

Recursive majority of three has been studied before in various contexts. It
is a monotone function which is very sensitive to noise (Mossell & O’Donnell
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2003), making it useful for hardness amplification in NP (O’Donnell 2002).
Jayram et al. (2003) give nontrivial lower and upper bounds on the randomized
decision tree complexity of recursive majority of three. They show a lower
bound of (7/3)h on the randomized decision tree complexity. As far as we
know, the quantum query complexity of recursive majority of three has not
yet been investigated. We show a lower bound of 2h on the quantum query
complexity.

Lemma 7.1. sumPI(R-MAJ
h
3) = maxPI(R-MAJ

h
3) = 2h.

Proof. To see that maxPI(R-MAJ
h
3) ≤ 2h, observe that C0(R-MAJ

h
3) =

C1(R-MAJ
h
3) = 2h. The result then follows from Lemma 6.3.

We now turn to the lower bound. We first show a lower bound for R-MAJ
1
3,

the majority of three function, and then apply Lemma 3.5. Consider the fol-
lowing table, where the rows are indexed by negative instances x, the columns
by positive instances y, and 1’s indicate when dH(x, y) = 1.

110 101 011
001 0 1 1
010 1 0 1
100 1 1 0

If we interpret this table as the adjacency matrix of a graph, it is clear that
every vertex has degree 2. Thus Khrapchenko’s method gives a bound of 4 for
the base function. By Theorem 5.1 we have sumPI(R-MAJ

1
3) ≥ 2. Now applying

Lemma 3.5 gives the lemma. �

From Lemma 7.1 we immediately obtain quantum query complexity and
formula size lower bounds:

Theorem 7.2. Let R-MAJ
h
3 be the recursive majority of three function of

height h. Then

Qǫ(R-MAJ
h
3) ≥ (1 − 2

√

ǫ(1 − ǫ))2h and L
ǫ(R-MAJ

h
3) ≥ (1 − 2ǫ)4h.

The best upper bound on the formula size of R-MAJ
h
3 is 5h. For this bound,

we will use the following simple proposition about the formula size of iterated
functions.

Proposition 7.3. Let S ⊆ {0, 1}n and f : S → {0, 1}. If L(f) ≤ s then
L(fd) ≤ sd, where fd is the dth iteration of f .
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Proposition 7.4. L(R-MAJ
h
3) ≤ 5h.

Proof. The formula (x1 ∧ x2) ∨ ((x1 ∨ x2) ∧ x3) computes R-MAJ
1
3 and has

five leaves. Using Proposition 7.3 gives L(R-MAJ
h
3) ≤ 5h. �

7.2. Ambainis’ function. We define a function fA : {0, 1}4 → {0, 1} after
Ambainis (2003). This function evaluates to 1 on the following values: 0000,
0001, 0011, 0111, 1111, 1110, 1100, 1000. That is, f(x) = 1 when x1 ≤ x2 ≤
x3 ≤ x4 or x1 ≥ x2 ≥ x3 ≥ x4. To obtain this formulation from Ambainis’
original definition, exchange x1 and x3, and take the negation of the resulting
function. There are a few things to notice about this function. The sensitivity
of fA is 2 on every input. Also on an input x = x1x2x3x4 the value of fA(x)
changes if both bits sensitive to x are flipped simultaneously, and if both bits
insensitive for x are flipped simultaneously.

We will be looking at iterations of the base function fA as in Definition 3.4.
Notice that the sensitivity of fd

A is 2d on every input x ∈ {0, 1}4d

.

Lemma 7.5. sumPI(fd
A) = 2.5d.

Proof. Ambainis (2003) has already shown that sumPI(fd
A) ≥ 2.5d.

We now show the upper bound. We show an upper bound for the base
function fA and then use the composition Lemma 3.1. Every input x1x2x3x4

has two sensitive variables and two insensitive variables. For any x ∈ {0, 1}4

we set px(i) = 2/5 if i is sensitive for x and px(i) = 1/10 if i is insensitive for x.
The claim follows from the following observation: for any x, y ∈ {0, 1}4 such
that f(x) 6= f(y) at least one of the following holds:

◦ x and y differ on a position i which is sensitive for both x and y. Thus
∑

i

√

px(i)py(i) ≥ 2/5.

◦ x and y differ on at least two positions, each of them being sensitive for
at least one of x, y. Thus

∑

i

√

px(i)py(i) ≥ 2
√

1/25 = 2/5. �

This lemma gives us a bound of 6.25d ≈ N1.32 on the formula size of fd
A.

Since the sensitivity of fd
A is 2d, by Lemma 6.1, the best bound provable by

Khrapchenko’s method, Koutsoupias’ method, and H̊astad’s lemma is 4d = N .

It is natural to ask how tight this formula size bound is. The best upper
bound we can show on the formula size of fd

A is 10d.
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Proposition 7.6. L(fd
A) ≤ 10d.

Proof. It can be easily verified that the following formula of size 10 com-
putes the base function fA:

(¬x1 ∨ x3 ∨ ¬x4) ∧ ((¬x1 ∧ x3 ∧ x4) ∨ ((x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3))) .

This formula was found by computer search. The claim now follows from
Proposition 7.3. �

The Ambainis function has a monochromatic rectangle partition with eight
rectangles. Thus by Theorem 4.5, maxPI(fh

A) ≤ 8h/2.

7.3. Collision problem. In this section we look at the collision problem.
This is a promise problem, where for an alphabet Σ the inputs x = x1x2 . . . xn ∈
Σn satisfy one of the following conditions:

◦ All xi are different.

◦ For each i there exists exactly one j 6= i such that xi = xj.

Those inputs satisfying the first condition are positive inputs and those satisfy-
ing the second condition are negative. An optimal lower bound for the quantum
query complexity of Ω(n1/3) has been given by Aaronson & Shi (2004). We now
show that the quantum adversary method cannot give better than a constant
bound for this problem.

Lemma 7.7. sumPI(fC) ≤ 2.

Proof. We demonstrate a set of probability distributions px such that for
any positive instance x and negative instance y we have

∑

i: xi 6=yi

√

px(i)py(i) ≥ 1/2.

The upper bound then follows.
Our probability distribution is very simple: for every x, let px(i) be the

uniform distribution over [n]. Any positive and negative instance must disagree
in at least n/2 positions, thus

∑

i: xi 6=yi

√

px(i)py(i) ≥
n

2

√

1

n

1

n
=

1

2
. �



192 Laplante, Lee & Szegedy cc 15 (2006)

On the other hand, maxPI(fC) ≥
√

n/2. As there is an upper bound for
the collision problem of O(n1/3) by Brassard, Høyer and Tapp (Brassard et al.

1997), this also shows that in general maxPI(f) is not a lower bound on the
quantum query complexity of f .

Lemma 7.8. maxPI(fC) = Θ(
√

n).

Proof. For the upper bound: On every positive instance x, where all xi are
different, we put the uniform distribution over i ∈ [n]; for a negative instance y
we put probability 1/2 on the first position, and probability 1/2 on the position
j such that y1 = yj. As y1 = yj, any positive instance x must differ from y
on position 1 or position j (or both). Thus maxi: xi 6=yi

px(i)py(i) ≥ 1/2n and
maxPI(fC) ≤

√
2n.

Now for the lower bound. Fix a set of probability distributions px. Let
x be any positive instance. There must be at least n/2 positions i satisfying
px(i) ≤ 2/n. Call this set of positions I. Now consider a negative instance y of
where yj = xj for all j 6∈ I, and y is assigned values in I in an arbitrary way so
as to make it a negative instance. For this pair x, y we have maxi

√

px(i)py(i) ≤
√

2/n, thus maxPI(fC) ≥
√

n/2. �

The following table summarizes the bounds from this section.

Function Input sum Qǫ max L s0s1

size PI PI

R-MAJ
h
3 N 2h ≈ Ω(N0.63) N0.63 Ω(N1.26), N1.26

= 3h N0.63 O(N1.46)

fh
A N 2.5h ≈ Ω(N0.66) ≤ 3h ≈ Ω(N1.32), N

= 4h N0.66 (Ambainis 2003) N0.75 O(N1.66)

fC N 2 Θ(N1/3) Θ(
√

N) ⊥ ⊥

8. Conclusions and open problems

An outstanding open problem is whether the square of the quantum query
complexity lower-bounds the formula size. We have given some support to this
conjecture by showing it is true for one of the two main techniques of proving
lower bounds on quantum query complexity. A simpler problem than the above
might be to show the same is true of approximate polynomial degree, the other
main lower bound technique for quantum query complexity.
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We have seen that many formula size techniques in the literature can be
viewed as clever ways of defining a subadditive measure on rectangles. In
the search for better formula size lower bounds, it would be interesting to
find other such measures; perhaps of particular interest are measures which
rely on the disjointness condition for subadditivity, as the squared spectral
norm does. Another example of a matrix norm which is subsquare additive on
disjoint rectangles is the Frobenius norm, which has also been applied towards
communication complexity theoretic ends as in Theorem 5.6. Let σ1(A) ≥
· · · ≥ σn(A) denote the singular values of A. Noticing that

‖A‖2
2 = σ1(A)2 and ‖A‖2

F = σ1(A)2 + · · · + σn(A)2

entices us to make the following conjecture:

Conjecture 8.1. Let A be a matrix over X ×Y with n = min{|X|, |Y |} and
let R be a rectangle partition of X × Y . Then for any 1 ≤ k ≤ n,

(8.2)
k

∑

i=1

σ2
i (A) ≤

∑

R∈R

k
∑

i=1

σ2
i (AR).

Recently, Lee (2006) has shown that the conjecture is true for “tree-like”
rectangle decompositions R, that is, for rectangle decompositions arising from
communication protocols. Thus, in particular, in the spectral formulation of
sumPI

2, one can replace the squared spectral norm with
∑k

i=1 σ2
i (A) for any k,

and the resulting quantity also lower-bounds formula size.
We have seen that the quantum adversary method breaks through the

“Hamming distance 1” barrier and subsumes several previous formula size
methods, in some cases giving provably stronger lower bounds on formula size.
One question remaining is the relationship between sumPI

2 and the technique
of Karchmer, Kushilevitz, and Nisan described in Theorem 5.7. In all the ex-
amples we know of, Theorem 5.7 gives lower bounds at least as large as sumPI

2.
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