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Abstract
The question of how large Bell inequality violations can be, for quantum distributions, has been
the object of much work in the past several years. We say a Bell inequality is normalized if its
absolute value does not exceed 1 for any classical (i.e. local) distribution. Upper and (almost)
tight lower bounds have been given in terms of number of outputs of the distribution, number
of inputs, and the dimension of the shared quantum states. In this work, we revisit normalized
Bell inequalities together with another family: inefficiency-resistant Bell inequalities. To be
inefficiency-resistant, the Bell value must not exceed 1 for any local distribution, including those
that can abort. Both these families of Bell inequalities are closely related to communication
complexity lower bounds. We show how to derive large violations from any gap between classical
and quantum communication complexity, provided the lower bound on classical communication
is proven using these lower bounds. This leads to inefficiency-resistant violations that can be
exponential in the size of the inputs. Finally, we study resistance to noise and inefficiency for
these Bell inequalities.
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1 Introduction

The question of achieving large Bell violations has been studied since Bell’s seminal paper
in 1964 [6]. In one line of investigation, proposals have been made to exhibit families of
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5:2 Robust Bell Inequalities from Communication Complexity

Table 1 Bounds on quantum violations of bipartite normalized Bell inequalities, in terms of the
dimension d of the local Hilbert space, the number of settings (or inputs) N and the number of
outcomes K (or outputs) per party. In the fourth column, we compare ad hoc results to the recent
constructions of [10] (Theorem 7) which gives a lower bound of

√
c

q
, where c (resp. q) stands for the

classical (resp. quantum) communication complexity of simulating a distribution. We give upper
bounds on their construction in terms of the parameters d, N, K.

Parameter Upper bound Ad hoc lower
bounds

Best possible lower
bound from [10]

Number of inputs N 2c ≤ N [29, 12, 21]
√
N

log(N) [19]
√
c
q ≤ log(N)

Number of outputs K O(K) [19] Ω
(

K
(log(K))2

)
[11] ≤ log(K)

Dimension d O(d) [21] Ω
(

d
(log(d))2

)
[11] ≤ log log(d)

distributions which admit unbounded violations [33, 28, 34, 36]. In another, various measures
of nonlocality have been studied, such as the amount of communication necessary and
sufficient to simulate quantum distributions classically [32, 7, 42, 43, 37, 12], or the resistance
to detection inefficiencies and noise. More recently, focus has turned to giving upper and
lower bounds on violations achievable, in terms of various parameters: number of players,
number of inputs, number of outputs, dimension of the quantum state, and amount of
entanglement [12, 21, 19].

Up until quite recently, violations were studied in the case of specific distributions
(measuring Bell states), or families of distributions. Buhrman et al. [11] gave a construction
that could be applied to several problems which had efficient quantum protocols (in terms of
communication) and for which one could show a trade-off between communication and error
in the classical setting. This still required an ad hoc analysis of communication problems.
Recently Buhrman et al. [10] proposed the first general construction of quantum states
along with Bell inequalities from any communication problem. The quantum states violate
the Bell inequalities when there is a sufficiently large gap between quantum and classical
communication complexity (a super-quadratic gap is necessary, unless a quantum protocol
without local memory exists).

Table 1 summarizes the best known upper and lower bounds on quantum violations
achievable with normalized Bell inequalities.

1.1 Our results
We revisit the question of achieving large Bell violations by exploiting known connections with
communication complexity. Strong lower bounds in communication complexity, equivalent to
the partition bound, amount to finding inefficiency-resistant Bell inequalities [27]. These are
Bell functionals that are bounded above by 1 on all local distributions that can abort.

First, we study the resistance of normalized Bell inequalities to inefficiency. We show that,
up to a constant factor in the value of the violation, any normalized Bell inequality can be
made resistant to inefficiency while maintaining the normalization property (Theorem 6).

Second, we show how to derive large Bell violations from any communication problem for
which the partition bound is bounded below and the quantum communication complexity
is bounded above. The problems studied in communication complexity are far beyond the
quantum set, but we show how to easily derive a quantum distribution from a quantum
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Table 2 Comparison of the Bell violations obtained by the general construction of Buhrman et
al. [10] for normalized Bell violations (second column) and this work, for inefficiency-resistant Bell
violations (see Propositions 13, 14, 15, and 16). The parameter n is the size of the input (typically,
N = 2n.) Explicit Bell inequalities are given in the Appendix. The construction of Buhrman et
al. only yields a violation when the gap between classical and quantum complexities is more than
quadratic. In the case where the gap is too small to prove a violation, we indicate this with “N/A”.

Problem Normalized Bell violations [10] Inefficiency-resistant Bell
violations (this work)

VSP [38, 24] Ω
(

6
√
n/
√

logn
)

d = 2Θ(n logn),K = 2Θ(n)
2Ω( 3√n)−O(logn)

d = 2O(logn),K = 3

DISJ [39, 40, 1] N/A 2Ω(n)−O(
√
n)

d = 2O(
√
n),K = 3

TRIBES [18, 9] N/A 2Ω(n)−O(
√
n log2 n)

d = 2O(
√
n log2 n),K = 3

ORT [41, 9] N/A 2Ω(n)−O(
√
n logn)

d = 2O(
√
n logn),K = 3

protocol. The Bell value we obtain is 2c−2q, where c is the partition lower bound on the
classical communication complexity of the problem considered, and q is an upper bound on
its quantum communication complexity (Theorem 8 and Corollary 9). The quantum
distribution has one extra output per player compared to the original distribution and uses
the same amount of entanglement as the quantum protocol plus as many EPR pairs as
needed to teleport the quantum communication in the protocol. We show that these Bell
violations can be made noise-resistant, at the cost of a 22q factor in the number of outcomes
per player (Theorem 10).

Finally, we provide tools to build Bell inequalities from communication lower bounds in the
literature. Lower bounds used in practice to separate classical from quantum communication
complexity are usually achieved using corruption bounds and its variants. In Theorem 12,
we give an explicit construction which translates these bounds into a suitable Bell functional.
Table 2 summarizes the new results or the improvements that we obtain in this work.

1.2 Related work
The study of the maximum violation of Bell inequalities began with Tsirelson [44], who
showed that for two-outcome correlation Bell inequalities, the maximum violation is bounded
above by Grothendieck’s constant. Tsirelson also raised the question of whether one can
have unbounded violations of Bell inequalities. More precisely, he asked whether there exist
families of Bell inequalities for which the amount of the violation grows arbitrarily large.

The first answer to this question came from Mermin [33], who gave a family Bell
inequalities for which a violation exponential in the number of parties is achieved. In the
years that followed, several new constructions appeared for number of parties and number of
inputs [3, 30, 28, 34, 36].

The study of upper bounds on violations of normalized Bell inequalities resumed in [12],
where an upper bound of O(K2) (with K the number of outputs per player) and of 2c ≤ N
(with c the communication complexity and N the number of inputs per player) were proven.
In [21] the authors proved a bound of O(d) in terms of the dimension d of the local Hilbert
space, and in [19], the bound in terms of the number of outputs was improved to O(K).

TQC 2016



5:4 Robust Bell Inequalities from Communication Complexity

In [19], Bell inequalities are constructed for which a near optimal, but probabilistic, violation
of order Ω(

√
m/ logm), with N = K = d = m, is proven. In [11], the same violation,

although requiring N = 2m inputs, is achieved for a family of Bell inequalities and quantum
distributions built using the quantum advantage in one-way communication complexity for
the Hidden Matching problem (with K = d = m). In the same paper, a violation of order
Ω(m/(logm)2), with K = d = m and N = 2m/m is achieved with the Khot-Vishnoi game.
Recently, an asymmetric version of that game was introduced to allow one of the parties
to only make dichotomic measurements, with a smaller (although almost optimal for this
scenario) violation Ω(

√
m/(logm)2) [35].

For inefficiency-resistant Bell inequalities, the bounds in [19] do not apply. In fact,
Laplante et al. proved in [27] a violation exponential in the dimension and the number of
outputs for this type of Bell functionals, achieved by a quantum distribution built, as in [11],
from the Hidden Matching communication complexity problem.

The connection exhibited in [11] between Bell violations and communication complexity
is generalized by Buhrman et al. in [10] where a fully general construction is given to
go from a quantum communication protocol for a function f to a Bell inequality and a
quantum distribution which achieves a violation of order Ω

(√
R1/3(f)
Q1/3(f)

)
. The downside to this

construction is that the quantum distribution has a double exponential (in the communication)
number of outputs and the protocol to implement it uses an additional double exponential
amount of entanglement. Also, this result does not apply for quantum advantages in a
zero-error setting.

2 Preliminaries

2.1 Quantum nonlocality

Local, quantum, and nonsignaling distributions have been widely studied in quantum
information theory since the seminal paper of Bell [6]. In an experimental setting, two players
share an entangled state and each player is given a measurement to perform. The outcomes
of the measurements are predicted by quantum mechanics and follow some probability
distribution p(a, b|x, y), where a is the outcome of Alice’s measurement x, and b is the
outcome of Bob’s measurement y.

We consider bipartite distribution families of the form p = (p(·, ·|x, y))(x,y)∈X×Y with
inputs (x, y) ∈ X × Y determining a probability distribution p(·, ·|x, y) over the outcomes
(a, b) ∈ A×B, with the usual positivity and normalization constraints. The set of probability
distribution families is denoted by P. For simplicity, we call simply “distributions" such
probability distribution families. The expression “Alice’s marginal" refers to her marginal
output distribution, that is

∑
b p(·, b|x, y) (and similarly for Bob).

The local deterministic distributions, denoted Ldet, are the ones where Alice outputs
according to a deterministic strategy, i.e., a (deterministic) function of x, and Bob inde-
pendently outputs as a function of y, without communicating. The local distributions L are
obtained by taking distributions over the local deterministic strategies. Operationally, this
corresponds to protocols with shared randomness and no communication. Geometrically, L
is the convex hull of Ldet.

A Bell test [6] consists of estimating all the probabilities p(a, b|x, y) and computing a Bell
functional, or linear function, on these values. The Bell functional B is chosen together with
a threshold τ so that any local classical distribution ` verifies the Bell inequality B(`) ≤ τ ,
but the chosen distribution p exhibits a Bell violation: B(p) > τ . By normalizing, we can
assume without loss of generality that ` verifies B(`) ≤ 1 for any ` ∈ L, and B(p) > 1.
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In this paper, we will also consider strategies that are allowed to abort the protocol with
some probability. When they abort, they output the symbol ⊥ (⊥ denotes a new symbol
which is not in A ∪ B). We will use the notation L⊥det and L⊥ to denote local strategies that
can abort, where ⊥ is added to the possible outputs for both players. When ` ∈ L⊥det or L⊥,
`(a, b|x, y) is not conditioned on a, b 6= ⊥ since ⊥ is a valid output for such distributions.

The quantum distributions, denoted Q, are the ones that result from applying measure-
ments x, y to their part of a shared entangled bipartite state. Each player outputs his or
her measurement outcome (a for Alice and b for Bob). In communication complexity terms,
these are zero-communication protocols with shared entanglement. If the players are allowed
to abort, then the corresponding set of distributions is denoted Q⊥.

Boolean (and other) functions can be cast as sampling problems. Consider a boolean
function f : X × Y → {0, 1} (non-boolean functions and relations can be handled similarly).
First, we split the output so that if f(x, y) = 0, Alice and Bob are required to output the
same bit, and if f(x, y) = 1, they output different bits. Let us further require Alice’s marginal
distribution to be uniform, likewise for Bob, so that the distribution is well defined. Call
the resulting distribution pf , that is, for any a, b ∈ {0, 1} and (x, y) ∈ X × Y, we have
pf (a, b|x, y) = 1/2 if a⊕ b = f(x, y), and pf (a, b|x, y) = 0 otherwise, ⊕ being the 1-bit XOR.

If pf were local, f could be computed with one bit of communication using shared
randomness: Alice sends her output to Bob, and Bob XORs it with his output. If pf were
quantum, there would be a 1-bit protocol with shared entanglement for f . In communication
complexity, we are usually interested in distributions having nontrivial communication
complexity, and lie well beyond these sets.

Finally, a distribution is nonsignaling if for each player, its marginal output distributions,
given by pA(a|x, y) =

∑
b p(a, b|x, y), for Alice, and pB(b|x, y) =

∑
a p(a, b|x, y), for Bob,

do not depend on the other player’s input. When this is the case, we write the marginals
as pA(a|x) and pB(b|y). Operationally, this means that each player cannot influence the
statistics of what the other player observes with his own choice of input. We note with C the
set of nonsignaling distributions, also referred to as the causal set, and we note C⊥ when we
allow aborting. The well-known inclusion relations between these sets are L ⊂ Q ⊂ C ⊂ P.

For any Boolean function f , the distribution pf is nonsignaling since the marginals are
uniform. A fundamental question of quantum mechanics has been to establish experimentally
whether nature is truly nonlocal, as predicted by quantum mechanics, or whether there is
a purely classical (i.e., local) explanation to the phenomena that have been predicted by
quantum theory and observed in the lab.

2.2 Measures of nonlocality
We have described nonlocality as a yes/no property, but some distributions are somehow
more nonlocal than others. To have a robust measure of nonlocality, it should verify some
common sense properties: for a fixed distribution, the measure should be bounded; it should
also be convex, since sampling from the convex combination of two distributions can be done
by first picking randomly one of the two distributions using shared randomness, and then
sampling from that distribution. We also expect such a measure of nonlocality to have various
equivalent formulations. Several measures have been proposed and studied: resistance to
noise [22, 2, 36, 20], resistance to inefficiency [30, 31, 27], amount of communication necessary
to reproduce them [32, 7, 42, 43, 37, 12], information-theoretic measures [8, 14, 13], etc.

In the form studied in this paper, normalized Bell inequalities were first studied in [12],
where they appeared as the dual of the linear program for a well-studied lower bound on
communication complexity, known as the nuclear norm ν [29] (the definition is given in
Section 2.3). There are many equivalent formulations of this bound. For distributions

TQC 2016



5:6 Robust Bell Inequalities from Communication Complexity

arising from boolean functions, it has the mathematical properties of a norm, and it is
related to winning probabilities of XOR games. It can also be viewed as a gauge, that
is, a quantity measuring by how much the local set must be expanded in order to contain
the distribution considered. For more general nonsignaling distributions, besides having a
geometrical interpretation in terms of affine combinations of local distributions, it has also
been shown to be equivalent to the amount of local noise that can be tolerated before the
distribution becomes local [21].

A subsequent paper [27] studied equivalent formulations of the partition bound, one of the
strongest lower bounds in communication complexity [17]. This bound also also has several
formulations: the primal formulation can be viewed as resistance to detector inefficiency, and
the dual formulation is given in terms of inefficiency-resistant Bell inequality violations.

In this paper, we show how to deduce large violations on quantum distributions from large
violations on nonsignaling distributions, provided there are efficient quantum communication
protocols for the latter.

2.3 Communication complexity and lower bounds
In classical communication complexity (introduced by [45]), two players each have a share of
the input, and wish to compute a function on the full input. Communication complexity
measures the number of bits they need to exchange to solve this problem in the worst case,
over all inputs of a given size n. In this paper we consider a generalization of this model,
where instead of computing a function, they each produce an output, say a and b, which
should follow, for each (x, y), some prescribed distribution p(a, b|x, y) (which depends on
their inputs x, y). We assume that the order in which the players speak does not depend on
the inputs. This is without loss of generality at a cost of a factor of 2 in the communication.

We use the following notation for communication complexity of distributions. Rε(p) is the
minimum number of bits exchanged in the worst case to output with the distribution p, up to
ε in total variation distance for all x, y. We call total variation distance between distributions
the distance denoted by |.|1, and defined as |p−p′|1 = maxx,y

∑
a,b |p(a, b|x, y)−p′(a, b|x, y)|.

We use Q to denote quantum communication complexity (see [47]), and we use the
superscript ∗ to denote the presence of shared entanglement. For randomized communication,
we assume shared randomness.

To give upper bounds on communication complexity it suffices to give a protocol and
analyze its complexity. Proving lower bounds is often a more difficult task, and many
techniques have been developed to achieve this. The methods we describe here are complexity
measures which can be applied to any function. To prove a lower bound on communication, it
suffices to give a lower bound on one of these complexity measures, which are bounded above
by communication complexity for any function. We describe here most of the complexity
measures relevant to this work.

The nuclear norm ν, given here in its dual formulation and extended to nonsignaling
distributions, is expressed by the following linear program [29, 12]. (There is a quantum
analogue, γ2, which is not needed in this work. We refer the interested reader to the definition
for distributions in [12]).

I Definition 1 ([29, 12]). The nuclear norm ν of a nonsignaling distribution p ∈ C is given
by

ν(p) = max
B

B(p)

subject to |B(`) |≤ 1 ∀` ∈ Ldet.

With error ε, νε(p) = minp′∈C:|p′−p|1≤ε ν(p′). We call any Bell functional that satisfies the
constraint in the above linear program normalized Bell functional.
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In this definition and in the rest of the paper, unless otherwise specified (in partic-
ular in Lemma 19), B ranges over vectors of real coefficients Ba,b,x,y and B(p) denotes∑
a,b,x,y Ba,b,x,yp(a, b|x, y), where a, b ranges over the non-abort outputs and x, y ranges over

the inputs. So even when B and p have coefficients on the abort events, we do not count
them. Table 1 summarizes the known upper and lower bounds on ν for various parameters.
The (log of the) nuclear norm is a lower bound on classical communication complexity.

I Proposition 2 ([29, 12]). For any nonsignaling distribution p ∈ C, Rε(p) + 1 ≥ log(νε(p)),
and for any boolean function f , Rε(f) ≥ log(νε(pf )).

As lower bounds on communication complexity of Boolean functions go, ν is one of the
weaker bounds, equivalent to the smooth discrepancy [17], and no larger than the approximate
nonnegative rank and the smooth rectangle bounds [25]. More significantly for this work, up
to small multiplicative constants, for boolean functions, (the log of) ν is a lower bound on
quantum communication, so it is useless to establish gaps between classical and quantum
communication complexity. (This limitation, with the upper bound in terms of the number
of outputs on normalized Bell violations, is a consequence of Grothendieck’s theorem [15].)

The classical and quantum efficiency measures, given here in their dual formulations,
are expressed by the following two convex optimization programs. The classical bound is a
generalization to distributions of the partition bound of communication complexity [17, 27].
This bound is one of the strongest lower bounds known, and can be exponentially larger
than ν (an example is the Vector in Subspace problem). It is always as least as large as the
relaxed partition bound which is in turn always at least as large as the smooth rectangle
bound [17, 23]. Its weaker variants have been used to show exponential gaps between
classical and quantum communication complexity. The definition we give here is a stronger
formulation than the one given in [27]. We show they are equivalent in Appendix D.

I Definition 3 ([27]). The ε-error efficiency bound of a distribution p ∈ P is given by

eff ε(p) = max
B,β

β

subject to B(p′) ≥ β ∀p′ ∈ P s.t. |p′ − p|1 ≤ ε,
B(`) ≤ 1 ∀` ∈ L⊥det.

We call any Bell functional that satisfies the second constraint in the above linear program
inefficiency-resistant Bell functional. The ε-error quantum efficiency bound of a p ∈ P is

eff∗ε (p) = max
B,β

β

subject to B(p′) ≥ β ∀p′ ∈ P s.t. |p′ − p|1 ≤ ε,
B(q) ≤ 1 ∀q ∈ Q⊥.

We denote eff = eff0 and eff∗ = eff∗0 the 0-error bounds.

For any given distribution p, its classical communication complexity is bounded below by
the (log of the) efficiency. For randomized communication complexity with error ε, the bound
is log(eff ε) and for quantum communication complexity, the bound is log(eff∗ε ). Note that
for any p ∈ Q, the quantum communication complexity is 0 and the eff∗ bound is 1. For
any function f , the efficiency bound eff ε(pf ) is equivalent to the partition bound [17, 27].

I Proposition 4 ([27]). For any p ∈ P and any 0 ≤ ε < 1/2, Rε(p) ≥ log(eff ε(p)) and
Qε(p) ≥ 1

2 log(eff∗ε (p)). For any p ∈ C and any 0 ≤ ε ≤ 1, νε(p) ≤ 2eff ε(p).

TQC 2016



5:8 Robust Bell Inequalities from Communication Complexity

Theorem 8 below involves upper bounds on the quantum efficiency bound. To give an
upper bound on the quantum efficiency of a distribution p, it is more convenient to use
the primal formulation, and upper bounds can be given by exhibiting a local (or quantum)
distribution with abort which satisfies the following two properties: the probability of aborting
should be the same on all inputs x, y, and conditioned on not aborting, the outputs of the
protocol should reproduce the distribution p. The efficiency is inverse proportional to the
probability of not aborting, so the goal is to abort as little as possible.

I Proposition 5 ([27]). For any distribution p ∈ P, eff∗(p) = 1/η∗, with η∗ the optimal
value of the following optimization problem (non-linear, because Q⊥ is not a polytope).

max
ζ,q∈Q⊥

ζ

subject to q(a, b|x, y) = ζp(a, b|x, y) ∀x, y, a, b ∈ X×Y×A×B

Moreover, for any 0 ≤ ε ≤ 1, eff∗ε (p) = minp′∈P:|p′−p|1≤ε eff
∗(p′).

3 Properties of Bell inequalities

Syntactically, there are two differences between the normalized Bell functionals (Definition 1)
and the inefficiency-resistant ones (Definition 3). The first difference is that the normalization
constraint is relaxed: for inefficiency-resistant functionals, the lower bound on the Bell value
for local distributions is removed. Since this is a maximization problem, this relaxation
allows for larger violations. This difference alone would not lead to a satisfactory measure of
nonlocality, since one could obtain unbounded violations by shifting and dilating the Bell
functional. The second difference prevents this. The upper bound is required to hold not
only for local distributions, but also those that can abort. This is a much stronger condition.
Notice that a local distribution can selectively abort on configurations that would otherwise
tend to keep the Bell value small, making it harder to satisfy the constraint.

In this section, we show that normalized Bell violations can be modified to be resistant to
local distributions that abort, while preserving the violation on any nonsignaling distribution,
up to a factor of 3. This means that we can add the stronger constraint of resistance to
local distributions that abort to Definition 1, incurring a loss of just a factor of 3, and the
only remaining difference between the resulting linear programs is the relaxation of the lower
bound (dropping the absolute value) for local distributions that abort.

I Theorem 6. Let B be a normalized Bell functional on A × B × X × Y and p ∈ C a
nonsignaling distribution such that B(p) ≥ 1. Then there exists a normalized Bell functional
B∗ on (A∪{⊥})× (B∪{⊥})×X ×Y with 0 coefficients on the ⊥ outputs such that : ∀p ∈ C,
B∗(p) ≥ 1

3B(p)− 2
3 , and ∀` ∈ L

⊥
det, |B∗(`)| ≤ 1.

The formal proof of Theorem 6 is deferred to Appendix A, and we will only give its
high-level structure in this part of the paper. First, we show (see Observation 17) how to
rescale a normalized Bell functional so that it saturates its normalization constraint. Then,
Definition 18 adds weights to abort events to make the Bell functional resistant to inefficiency.
Finally, Lemma 19 removes the weights on the abort events of a Bell functional while keeping
it bounded on the local set with abort, without dramatically changing the values it takes on
the nonsignaling set. Our techniques are similar to the ones used in [31].
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4 Exponential violations from communication bounds

Recently, Buhrman et al. gave a general construction to derive normalized Bell inequalities
from any sufficiently large gap between classical and quantum communication complexity.

I Theorem 7 ([10]). For any function f for which there is a quantum protocol using q qubits
of communication but no prior shared entanglement, there exists a quantum distribution
q ∈ Q and a normalized Bell functional B such that B(q) ≥

√
R1/3(f)
6
√

3q (1− 2−q)2q.

Their construction is quite involved, requiring protocols to be memoryless, which they
show how to achieve in general, and uses multiport teleportation to construct a quantum
distribution. The Bell inequality they construct expresses a correctness constraint.

In this section, we show how to obtain large inefficiency-resistant Bell violations for
quantum distributions from gaps between quantum communication and classical communica-
tion lower bounds. We first prove the stronger of two statements, which gives violations of
effε(p)
eff?

ε′
(p) . For any problem for which a classical lower bound c is given using the efficiency or

partition bound or any weaker method (including the rectangle bound and its variants), and
any upper bound q on quantum communication complexity, it implies a violation of 2c−2q.

I Theorem 8. For any distribution p ∈ P and any 0 ≤ ε′ ≤ ε ≤ 1, if (B, β) is a feasible
solution to the dual of eff ε(p) and (ζ,q) is a feasible solution to the primal for eff?ε′(p),
then there is a quantum distribution q ∈ Q such that B(q) ≥ ζβ and B(`) ≤ 1,∀` ∈ L⊥det ,
and in particular, if both are optimal solutions, then B(q) ≥ effε(p)

eff?
ε′

(p) . The distribution q has
one additional output per player compared to the distribution p.

Proof. Let (B, β) be a feasible solution to the dual of eff ε(p), p′ be such that eff?ε′(p) =
eff?(p′) with |p′−p|1 ≤ ε′, and (ζ,q) be a feasible solution to the primal for eff?(p′). From
the constraints, we have q ∈ Q⊥, q(a, b|x, y) = ζp′(a, b|x, y) for all (a, b, x, y) ∈ A×B×X×Y,
B(`) ≤ 1 for all ` ∈ L⊥det, and B(p′′) ≥ β for all p′′ s.t. |p′′−p|1 ≤ ε. Then B(q) = ζB(p′) ≥
ζβ. However, q ∈ Q⊥ but technically we want a distribution in Q (not one that aborts). So
we add a new (valid) output ‘A’ to the set of outputs of each player, and they should output
‘A’ instead of aborting whenever q aborts. The resulting distribution, say q ∈ Q (with
additional outcomes ‘A’ on both sides), is such that B(q) = B(q) (since the Bell functional
B does not have any weight on ⊥ or on ‘A’). J

Theorem 7 and Theorem 8 are both general constructions, but there are a few significant
differences. Firstly, Theorem 8 requires a lower bound on the partition bound in the numerator,
whereas Theorem 7 only requires a lower bound on communication complexity (which could
be exponentially larger). Secondly, Theorem 7 requires a quantum communication protocol
in the denominator, whereas our theorem only requires an upper bound on the quantum
efficiency (which could be exponentially smaller). Thirdly, our bound is exponentially larger
than Buhrman et al.’s for most problems considered here, and applies to subquadratic gaps,
but their bounds are of the more restricted class of normalized Bell inequalities.

Theorem 8 gives an explicit Bell functional provided an explicit solution to the efficiency
(partition) bound is given and the quantum distribution is obtained from a solution to the
primal of eff? (Proposition 5). Recall that a solution to the primal of eff? is provided by a
quantum zero-communication protocol that can abort, which conditioned on not aborting,
outputs following p. We can also start from a quantum protocol, as we show below. From
the quantum protocol, we derive a quantum distribution using standard techniques.
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I Corollary 9. For any distribution p ∈ P and any 0 ≤ ε′ ≤ ε ≤ 1 such that Rε(p) ≥
log(eff ε(p)) ≥ c and Qε′(p) ≤ q, there exists an explicit inefficiency-resistant B derived
from the efficiency lower bound, and an explicit quantum distribution q ∈ Q derived from
the quantum protocol such that B(q) ≥ 2c−2q.

Proof. Let (B, β) be an optimal solution to eff ε(p) and let c be such that eff ε(p) = β ≥ 2c.
By optimality of B, we have B(p′) ≥ 2c for any p′ such that |p′ −p|1 ≤ ε. Since Qε′(p) ≤ q,
there exists a q-qbit quantum protocol for some distribution p′ with |p′ − p|1 ≤ ε. Then, we
can use teleportation to obtain a 2q classical bit, entanglement-assisted protocol for p′. We
can simulate it without communication by picking a shared 2q-bit random string and running
the protocol but without sending any messages. If the measurements do not match the string,
output a new symbol ‘A’ (not in the output set of the quantum protocol and different from
⊥). We obtain a quantum distribution q such that B(q) = B(p′)/22q ≥ 2c−2q. J

Most often, communication lower bounds are not given as efficiency or partition bounds,
but rather using variants of the corruption bound. We show in Section 6.1 how to map a
corruption bound to explicit Bell coefficients.

5 Noise-resistant violations from communication bounds

Normalized Bell inequalities are naturally resistant to any local noise: if the observed
distribution is p̃ = (1−ε)p+ε` for some ` ∈ L, then B(p̃) ≥ (1−ε)B(p)−ε since |B(`) |≤ 1.
In inefficiency-resistant Bell inequalities, relaxing the absolute value leads to the possibility
that B(`) has a large negative value for some local `. (Indeed, such large negative values
are inherent to large gaps between ν and eff .) If this distribution were used as adversarial
noise, the observed distribution, (1− ε)p + ε`, could have a Bell value much smaller than 1.
This makes inefficiency-resistant Bell inequalities susceptible to adversarial local noise.

Our construction from Theorem 8 is susceptible to uniform noise since most of the time,
the output is ‘A’. Uniform noise will disproportionately hit the non-‘A’ outputs, destroying
the structure of the distribution. In Theorem 10, we show that our construction can be
made resistant to uniform noise, by including a (possible) transcript from the protocol in the
outputs. (Notice that this leads to a much larger output set.) Since the transcripts in our
construction are teleportation measurements, they follow a uniform distribution, making the
modified distribution resistant to uniform noise. The tolerance to noise comes from the error
parameter in the classical communication lower bound.

Let Nε(p) = {(1− δ)p + δu, δ ∈ [0, ε]} ⊆ P be the ε-noisy neighbourhood of p, where u
the uniform noise distribution, that is: u(a, b|x, y) = 1

|A|·|B| for all (a, b) ∈ A× B.

I Theorem 10. For any distribution p ∈ P and any 0 ≤ ε′ ≤ ε ≤ 1 such that Rε(p) ≥
log(eff ε(p)) ≥ c and Qε′(p) ≤ q, there exists an explicit inefficiency-resistant B̃ derived
from the efficiency lower bound, and an explicit quantum distribution q ∈ Q derived from
the quantum protocol such that B̃(q′) ≥ 2c−2q for any q′ ∈ Nε−ε′(q).

Proof. Let A (resp. B) be Alice’s (resp. Bob’s) possible outputs for p. From a quantum
communication protocol for p′ with |p′ − p|1 ≤ ε′ using q qubits of communication, we
construct an entanglement-assisted protocol using 2q bits of communication and teleportation.
LetMA (resp. MB) be the set of possible transcripts for Alice (resp. Bob), with |MA |= MA

(resp. |MB |= MB), and note that logMA + logMB = 2q.
We define the quantum distribution q where Alice’s possible outputs are A×MA and

Bob’s possible outputs are B ×MB . Alice proceeds as follows (Bob proceeds similarly):
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1. She runs the quantum protocol for p′ as if all bits received from Bob were 0.
2. She outputs (a, µA), where µA is the transcript of the messages she would have sent to

Bob and a is the output she would have produced in the original protocol.
By definition, this distribution is such that, for all a, b, x, y, q(a, 0, b, 0|x, y) = 1

22q p
′(a, b|x, y).

Let effε(p) ≥ 2c be achieved by the Bell functional B. By definition, we have B(`) ≤ 1
for all ` ∈ L⊥det, and B(p′′) ≥ 2c for all p′′ such that |p′′ − p|1 ≤ ε. In particular for any
p′′ ∈ Nε−ε′(p), that is, p′′ = (1 − δ)p + δu for some δ ∈ [0, ε − ε′], we have |p′′ − p|1 ≤ ε

and therefore B(p′′) = (1− δ)B(p′) + δB(u) ≥ 2c, where B(u) = 1
AB

∑
a,b,x,y Ba,b,x,y.

Let the Bell functional B̃ for distributions over (A ×MA) × (B ×MB) be defined as
follows: B̃(a,µA),(b,µB),x,y = Ba,b,x,y if µA = µB = 0, and B̃(a,µA),(b,µB),x,y = 0 otherwise.

Let L̃⊥det be the local set for distributions over (A×MA)× (B ×MB). Then B̃ satisfies
B̃(`) ≤ 1 for all ` ∈ L̃⊥det (by assimilating any event with µA 6= 0 or µB 6= 0 to a ⊥ event),
as well as B̃(q) = 1

22qB(p′). Hence, ∀δ ∈ [0, ε − ε′], we also have (1 − δ)B̃(q) + δB̃(u) =
= (1− δ) 1

22qB(p′) + δ 1
ABMAMB

∑
a,µA,b,µB ,x,y

B̃(a,µA),(b,µB),x,y

= 1
22q

[
(1− δ)B(p′) + δ 1

AB

∑
a,b,x,y Ba,b,x,y

]
= 1

22q [(1− δ)B(p′) + δB(u)] .
Therefore, for all q′ ∈ Nε−ε′(q), B̃(q′) ≥ 2c−2q, as claimed. J

6 Explicit constructions

6.1 From corruption bound to Bell inequality violation
We now explain how to construct an explicit Bell inequality violation from the corruption
bound. The corruption bound, introduced by Yao in [46], is a very useful lower bound
technique. It has been used for instance in [39] to get a tight Ω(n) lower bound on the
randomized communication complexity of Disjointness (whereas the approximate rank, for
example, can only show a lower bound of Θ(

√
n)). Let us recall that a rectangle R of X ×Y

is a subset of that set of the form RA ×RB , where RA ⊆ X and RB ⊆ Y.

I Theorem 11 (Corruption bound [46, 4, 26]). Let f be a (possibly partial) Boolean function
on X × Y. Given γ, δ ∈ (0, 1), suppose that there is a distribution µ on X × Y such that for
every rectangle R ⊆ X × Y

µ(R ∩ f−1(1)) > γµ(R ∩ f−1(0))− δ

Then, for every ε ∈ (0, 1), 2Rε(f) ≥ 1
δ

(
µ(f−1(0))− ε

γ

)
.

See, e.g., Lemma 3.5 in [5] for a rigorous treatment. For several problems, such a µ is already
known. In Theorem 12 below, whose proof we defer to Appendix B, we show how to construct
a Bell inequality violation from this type of bound.

I Theorem 12. Let f be a (possibly partial) Boolean function on X×Y, where X ,Y ⊆ {0, 1}n.
Fix z ∈ {0, 1}. Let µ be an input distribution, and (Ui)i∈I (resp. (Vj)j∈J) be a family of
pairwise nonoverlapping subsets of f−1(z̄) (resp. of f−1(z)). Assume that there exists
g : N→ (0,+∞) such that, for any rectangle R ⊆ X × Y∑

i∈I
uiµ(R ∩ Ui) ≥

∑
j∈J

vjµ(R ∩ Vj)− g(n). (1)

Then, the Bell functional B given by the following coefficients: for all a, b, x, y ∈ {0, 1} ×
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{0, 1} × X × Y,

Ba,b,x,y =


1/2(−uig(n)−1µ(x, y)) if (x, y) ∈ Ui and a⊕ b = z,

1/2(vjg(n)−1µ(x, y)) if (x, y) ∈ Vj and a⊕ b = z,

0 otherwise.
(2)

satisfies

B(`) ≤ 1, ∀` ∈ L⊥det, (3)

B(pf ) = 1
2 · g(n)

∑
j

vjµ(Vj) (4)

and for any p′ ∈ P such that |p′ − pf |1 ≤ ε :

B(p′) ≥ 1
2 · g(n)

∑
j

vjµ(Vj)− ε

∑
j

|vj |µ(Vj) +
∑
i

|ui|µ(Ui)

 . (5)

For many other problems in the literature, such as Vector in Subspace and Tribes, stronger
variants of the corruption bound are needed to obtain good lower bounds. These stronger
variants have been shown to be no stronger than the partition bound (more specifically,
the relaxed partition bound) [23]. The generalization in Theorem 12 of the hypothesis
of Theorem 11, which the reader might have notice, allow us to construct explicit Bell
functionals also for these problems.

6.2 Some specific examples
Using Corollary 9 and the construction to go from a corruption bound (or its variants) to
a Bell inequality (Theorem 12), we give explicit Bell inequalities and violations for several
problems studied in the literature. Since our techniques also apply to small gaps, we include
problems for which the gap between classical and quantum communication complexity is
polynomial.

Vector in Subspace

In the Vector in Subspace Problem VSP0,n, Alice is given an n/2 dimensional subspace of
an n dimensional space over R, and Bob is given a vector. This is a partial function, and the
promise is that either Bob’s vector lies in the subspace, in which case the function evaluates
to 1, or it lies in the orthogonal subspace, in which case the function evaluates to 0. Note
that the input set of VSP0,n is continuous, but it can be discretized by rounding, which
leads to the problem ṼSPθ,n (see [24] for details). Klartag and Regev [24] show that the
VSP can be solved with an O(logn) quantum protocol, but the randomized communication
complexity of this problem is Ω(n1/3). As shown in [23], this is also a lower bound on the
relaxed partition bound. Hence Corollary 9 yields the following.

I Proposition 13. There exists a Bell inequality B and a quantum distribution qV SP ∈ Q
such that B (qV SP ) ∈ 2Ω(n1/3)−O(logn) and for all ` ∈ L⊥det, B(`) ≤ 1.

Note that the result of [24] (Lemma 4.3) is not of the form needed to apply Theorem 12. It
is yet possible to obtain an explicit Bell functional following the proof of Lemma 5.1 in [23].
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Disjointness

In the Disjointness problem, the players receive two sets and have to determine whether they
are disjoint or not. More formally, the Disjointness predicate is defined over X = Y = P([n])
by DISJn(x, y) = 1 iff x and y are disjoint. It is also convenient to see this predicate
as defined over length n inputs, where DISJn(x, y) = 1 for x, y ∈ {0, 1}n if and only if
|{i : xi = 1 = yi}| = 0. The communication complexity for DISJn is Ω(n) using a corruption
bound [39] and there is a quantum protocol using O(

√
n) communication [1]. Combining

these results with ours, we obtain the following.

I Proposition 14. There is a quantum distribution qDISJ ∈ Q and an explicit Bell inequal-
ity B satisfying: B(qDISJ) = 2Ω(n)−O(

√
n), and for all ` ∈ L⊥det, B(`) ≤ 1.

The proof is deferred to the Appendix (see Section C.1).

Tribes

Let r ≥ 2, n = (2r + 1)2. Let TRIBESn : {0, 1}n × {0, 1}n → {0, 1} be defined as:

TRIBESn(x, y) :=
√
n∧

i=1

(√
n∨

j=1
(x(i−1)

√
n+j ∧ y(i−1)

√
n+j)

)
. The Tribes function has an Ω(n)

classical lower bound [16] using the smooth rectangle bound and a O(
√
n(logn)2) quantum

protocol [9]. Combining these results with ours, we obtain the following.

I Proposition 15. There is a quantum distribution qTRIBES ∈ Q and an explicit Bell
inequality B satisfying: B(qTRIBES) = 2Ω(n)−O(

√
n(logn)2), and for all ` ∈ L⊥det, B(`) ≤ 1.

The proof is deferred to the Appendix (see Section C.2).

Gap Orthogonality

The Gap Orthogonality (ORT) problem was introduced by Sherstov as an intermediate step
to prove a lower bound for the Gap Hamming Distance (GHD) problem [41]. We derive an
explicit Bell inequality for ORT from Sherstov’s lower bound of Ω(n), shown in [23] to be
a relaxed partition bound. (Applying Corollary 9 also gives a (non-explicit) violation for
GHD.) The quantum upper bound is O(

√
n logn) by the general result of [9]. In the ORT

problem, the players receive vectors and need to tell whether they are nearly orthogonal or
far from orthogonal. More formally, we consider the input space {−1,+1}n (to stick to the
usual notations for this problem), and we denote 〈·, ·〉 the scalar product on {−1,+1}n. Let
ORTn : {−1,+1}n × {−1,+1}n → {−1,+1} be the partial function defined as in [41] by:
ORTn(x, y) = −1 if |〈x, y〉| ≤

√
n, and ORTn(x, y) = +1 if |〈x, y〉| ≥ 2

√
n. Combining the

results mentioned above with ours, we obtain the following.

I Proposition 16. There is a quantum distribution qORT ∈ Q and an explicit Bell inequality
B satisfying: B(qORT) = 2Ω(n)−O(

√
n logn), and for all ` ∈ L⊥det, B(`) ≤ 1.

The proof is deferred to the Appendix (see Section C.3).

7 Discussion

We have given three main results. First, we showed that normalized Bell inequalities can be
modified to be bounded in absolute value on the larger set of local distributions that can
abort without significantly changing the value of the violations achievable with nonsignaling
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distributions. Then, we showed how to derive large inefficiency-resistant Bell violations from
any gap between the partition bound and the quantum communication complexity of some
given distribution p. The distributions q achieving the large violations are relatively simple
(only 3 outputs for boolean distributions p) and can be made resistant to uniform noise
at the expense of an increase in the number of outputs exponential in Q(p). Finally, we
showed how to construct explicit Bell inequalities when the separation between classical and
quantum communication complexity is proven via the corruption bound.

From a practical standpoint, the specific Bell violations we have studied are probably not
feasible to implement, because the parameters needed are still impractical or the quantum
states are infeasible to implement. However, our results suggest that we could consider
functions with small gaps in communication complexity, in order to find practical Bell
inequalities that are robust against uniform noise and detector inefficiency. Let us consider
an experimental setup with non-abort probability η per side, and ε uniform noise. Suppose
we have a Boolean function with a lower bound of c > 3 log(1/η2) on classical communication
with ε′ error, and an (ε′−ε)-correct quantum protocol, with ε′ > ε, using q = log(1/η2)
qubits. Our construction gives an inefficiency-resistant Bell violation of 2c−2q > 1/η2, which
is robust against ε uniform noise. (The number of outcomes per side increases to 2

η2 .)
Factoring in the inefficiency, the observed violation would still be η22c−2q > 1.

Regarding upper bounds, since (the log of) efficiency is a lower bound on communication
complexity, inefficiency-resistant Bell violations are bounded above by the number of inputs
per side. For dimension d and number of outcomes K, we obtain the upper bound eff ε(q) ≤
2O((Kdε )2 log2(K)) for quantum distributions, by combining known bounds. Indeed, we know
that Rε(p) ≤ O((Kν(p)

ε )2 log2(K)) for any p ∈ C (see [12]). Combining this with the bounds
eff ε(p) ≤ 2Rε(p) (Proposition 4), and ν(q) ≤ O(d) for any q ∈ Q (see [21]), gives the desired
upper bound. Hence unbounded violations are possible for K = 3 outputs per side.
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A Proof of Theorem 6

I Observation 17. Let B be a non-constant normalized Bell functional and p ∈ C such that
B(p) ≥ 1. Consider `− ∈ Ldet such that B(`−) = m = min{B(`)|` ∈ Ldet} and `+ ∈ Ldet
such that B(`+) = M = max{B(`)|` ∈ Ldet}. We have m < M because B is non-constant.
The Bell functional B̃ defined by B̃(·) = 1

M−m (2B(·) −M −m), is such that B̃(`+) = 1,
B̃(`−) = −1, |B̃(`)| ≤ 1 for all ` ∈ L⊥det, and B̃(p) ≥ B(p).

I Definition 18. For any two families of distributions, mA = (mA(·|x))x∈X over outcomes in
A for Alice and mB = (mB(·|y))y∈Y over outcomes in B for Bob, fmA,mB

: C⊥ → C replaces
abort events on Alice’s (resp. Bob’s) side by a sample from mA (resp. mB).
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For B a normalized Bell functional with coefficients only on non-abort events, the Bell
functional B⊥mA,mB

on (A ∪ {⊥})× (B ∪ {⊥})×X × Y is given by

(B⊥mA,mB
)a,b,x,y = Ba,b,x,y + χ{⊥}(a)

∑
a′ 6=⊥

mA(a′|x)Ba′,b,x,y

+χ{⊥}(b)
∑
b′ 6=⊥

mB(b′|y)Ba,b′,x,y+χ{⊥}(a)χ{⊥}(b)
∑

a′,b′ 6=⊥
mA(a′|x)mB(b′|y)Ba′,b′,x,y

where χS is the indicator function for set S taking value 1 on S and 0 everywhere else.

Note that fmA,mB
preserves locality, and B⊥mA,mB

(p) = B(fmA,mB
(p)), ∀p ∈ C⊥, so

B⊥mA,mB
(p) = B(p), for all p ∈ C, and |B⊥mA,mB

(`)| ≤ 1, for all ` ∈ L⊥.

I Lemma 19. Let B′ be a normalized Bell functional on (A ∪ {⊥})× (B ∪ {⊥})×X × Y.
(possibly with weights on ⊥.) Then the Bell functional B′′ on the same set defined by

B′′a,b,x,y = B′a,b,x,y −B′a,⊥,x,y −B′⊥,b,x,y +B′⊥,⊥,x,y, (6)

for all (a, b, x, y) ∈ (A ∪ {⊥})× (B ∪ {⊥})×X × Y satisfies :
1. If B′′a,b,x,y = 0, then a = ⊥ or b = ⊥,
2. ∀p ∈ C, B′′(p) = B′(p)−B′(pA,⊥)−B′(p⊥,B) +B′(p⊥,⊥),
where pA,⊥ ∈ L⊥ (resp. p⊥,B ∈ L⊥) is the local distribution obtained from p if Bob
(resp. Alice) replaces any of his (resp. her) outputs by ⊥, and p⊥,⊥ ∈ L⊥ is the local
distribution where Alice and Bob always output ⊥. In Item 2 above, for any p′, B′(p′) =∑

a,b,x,y B
′
a,b,x,yp′(a, b|x, y) where the sum is also over the abort events.

Proof. Item 1 follows from (6). We prove Item 2. For p ∈ C⊥ with marginals pA and
pB, we have: for all y ∈ Y , pA(a|x) =

∑
b∈B∪{⊥} p(a, b|x, y), and for all x ∈ X, pB(b|y) =∑

a∈A∪{⊥} p(a, b|x, y). For the remainder of this proof, summations involving a (resp. b)
are over a ∈ A ∪ {⊥} (resp. b ∈ B ∪ {⊥}). By definition, pA,⊥(a, b|x, y) = pA(a|x)χ{⊥}(b),
p⊥,B(a, b|x, y) = χ{⊥}(a)pB(b|y), and p⊥,⊥(a, b|x, y) = χ{⊥}(a)χ{⊥}(b). We have:

B′′(p) =
∑
a,b,x,y

[
B′a,b,x,y −B′a,⊥,x,y −B′⊥,b,x,y +B′⊥,⊥,x,y

]
p(a, b|x, y)

=
∑
a,b,x,y

B′a,b,x,yp(a, b|x, y)−
∑
a,x,y

B′a,⊥,x,y
∑
b

p(a, b|x, y)

−
∑
b,x,y

B′⊥,b,x,y
∑
a

p(a, b|x, y) +
∑
x,y

B′⊥,⊥,x,y
∑
a,b

p(a, b|x, y)

= B′(p)−
∑
a,x,y

B′a,⊥,x,ypA(a|x)−
∑
b,x,y

B′⊥,b,x,ypB(b|y) +
∑
x,y

B′⊥,⊥,x,y

= B′(p)−B′(pA,⊥)−B′(p⊥,B) +B′(p⊥,⊥). J

We are now ready to prove Theorem 6.

Proof of Theorem 6. From Observation 17, we can assume that there exists `−, `+ ∈ Ldet
such that B(`−) = −1 and B(`+) = 1 (otherwise, we replace B by its saturated version B̃).
Since `− and `+ are deterministic distributions, we have: `− = `−A ⊗ `

−
B and `+ = `+A ⊗ `

+
B,

for some marginals `−A, `
−
B , `

+
A, and `

+
B . We consider the two replacing Bell functionals from

Definition 18 constructed from (B, `−A, `
−
B) on one hand, and (B, `+A, `

+
B) on the other hand.

Taking B′ = 1
2 (B⊥

`−
A
,`−
B

+B⊥
`+
A
,`+
B

), we have |B′(`)| ≤ 1, ∀` ∈ L⊥, and therefore we can apply
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Lemma 19 to B′ to get B′′. Since B′(p⊥,⊥) = 1
2 (B⊥

`−
A
,`−
B

(p⊥,⊥) +B⊥
`+
A
,`+
B

(p⊥,⊥)) = 1
2 (B(`−) +

B(`+)) = 0, we have for all p ∈ C⊥, B′′(p) = B′(p) − B′(pA,⊥) − B′(p⊥,B). Therefore
B∗ = 1

3B
′′ satisfies all the required properties. In particular, since |B′(`)| ≤ 1 ∀` ∈ L⊥, we

have for any p ∈ C, B∗(p) ≥ 1
3B
′(p) − 1

3 |B
′(pA,⊥)| − 1

3 |B
′(p⊥,B)| ≥ 1

3B
′(p) − 2

3 , and for
any ` ∈ L⊥, |B∗(`)| ≤ 1

3 |B
′(`)|+ 1

3 |B
′(`A,⊥)|+ 1

3 |B
′(`⊥,B)| ≤ 1. J

B Proof of Theorem 12

Proof. Let us first set Bz,x,y = Ba,b,x,y for all a⊕ b = z. Let ` ∈ L⊥det. Then, we have:

B(`) =
∑

(x,y)∈R

Bz,x,y +
∑

(x,y)∈S

Bz,x,y

where R and S are the two rectangles where ` outputs z. Let us take a rectangle R. Then :

∑
(x,y)∈R

Bz,x,y = 1
2 · g(n)

∑
j

vjµ(Vj ∩R)−
∑
i

uiµ(Ui ∩R)

 ≤ 1/2

with the inequality following from (1). This proves (3).
Let us now compute B(pf ). By linearity of B and the definition of its coefficients, we

have:

B(pf ) =
∑
a,b,x,y

Ba,b,x,ypf (a, b|x, y)

= 1
2

∑
(x,y)∈f−1(z),a,b

Ba,b,x,yχ{z}(a⊕ b) + 1
2

∑
(x,y)∈f−1(z̄),a,b

Ba,b,x,yχ{z̄}(a⊕ b)

= 1/2
∑
j

∑
(x,y)∈Vj

vjg(n)−1µ(x, y)

= 1
2 · g(n)

∑
j

vjµ(Vj)

(for the third equality we used the fact that Ba,b,x,y = 0 when a⊕ b = z̄). This proves (4).
Moreover, for any family of additive error terms ∆(a, b|x, y) ∈ [−1, 1] such that∑
a,b

|∆(a, b|x, y)| ≤ ε ∀x, y ∈ X × Y,

denoted collectively as ∆, we have

|B(∆)| =

∣∣∣∣∣∣
∑
a,b,x,y

Ba,b,x,y∆(a, b|x, y)

∣∣∣∣∣∣
= 1

2 · g(n)

∣∣∣∣∣∣
∑

a,b : a⊕b=z

∑
i

∑
(x,y)∈Ui

(−ui)µ(x, y)∆(a, b|x, y) +

∑
j

∑
(x,y)∈Vj

vjµ(x, y)∆(a, b|x, y)

∣∣∣∣∣∣
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≤ 1
2 · g(n)

∑
i

∑
(x,y)∈Ui

|ui|µ(x, y)

∑
a,b

|∆(a, b|x, y)|

 +

∑
j

∑
(x,y)∈Vj

|vj |µ(x, y)

∑
a,b

|∆(a, b|x, y)|


≤ ε

2 · g(n)

∑
i

|ui|µ(Ui) +
∑
j

|vj |µ(Vj)


From this calculation and (4), we obtain, for p′ = pf + ∆ :

B(p′) = B(pf ) +B(∆) ≥ 1
2 · g(n)

∑
j

vjµ(Vj)− ε

∑
j

|vj |µ(Vj) +
∑
i

|ui|µ(Ui)

 ,
which proves (5). J

C Explicit examples

Let us formulate a special case of Theorem 12 that will be useful in the examples. Here there
is just one subset in f−1(0) and one in f−1(1).

I Corollary 20. Let f be a (possibly partial) Boolean function on X×Y, where X ,Y ⊆ {0, 1}n.
Given γ ∈ (0, 1) and g : N → (0, 1), suppose that there is a distribution µ on X × Y such
that: for any rectangle R ⊆ X × Y,

µ(R ∩ f−1(1)) > γµ(R ∩ f−1(0))− g(n). (7)

Then µ satisfies (1) with z = 0, i = j = 1, U1 = f−1(1), V1 = f−1(0), u1 = 1, v1 = γ. Let B
be defined by (2), that is: for all a, b, x, y ∈ {0, 1} × {0, 1} × X × Y,

Ba,b,x,y =


− 1

2·g(n)µ(x, y) if f(x, y) = 1 and a⊕ b = 0
γ

2·g(n)µ(x, y) if f(x, y) = 0 and a⊕ b = 0
0 otherwise.

Then, B satisfies

B(`) ≤ 1, ∀` ∈ L⊥det,

B(pf ) = γ

2 · g(n)µ(f−1(0))

and for any p′ ∈ P such that |p′ − pf |1 ≤ ε :

B(p′) ≥ 1
2 · g(n)

[
γµ(f−1(0))− ε

(
γµ(f−1(0)) + µ(f−1(1))

)]
.

C.1 Disjointness
In [39], Razborov proved the following.

I Lemma 21 ([39]). There exist two distributions µ0 and µ1 with supp(µ0) ⊆ DISJ−1
n (1)

and supp(µ1) ⊆ DISJ−1
n (0), such that: for any rectangle R in the input space,

µ1(R) ≥ Ω(µ0(R))− 2Ω(n).
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Following his proof, one can check that we actually have:

µ1(R) ≥ 1
45µ0(R)− 2−εn+log2(2/9).

So, letting µ := (µ0 + µ1)/2,

µ(R ∩ f−1(0)) ≥ 1
45µ(R ∩ f−1(1))− 2−εn+log2(4/9). (8)

I Remark. Actually, supp(µ1) = A1 := {(x, y) : |x| = |y| = m, |x ∩ y| = 1} ⊆ DISJ−1
n (0).

Note that by this construction, µ(f−1(0)) = µ(f−1(1)) = 1/2. Combining (8) with
Corollary 20 (with g(n) = 2−εn+log2(4/9)), we obtain:

I Corollary 22. There exists a Bell inequality B satisfying: ∀` ∈ L⊥det, B(`) ≤ 1,

B(pDISJn) = 1
902εn−log2(4/9),

and for any distribution p′ ∈ P such that |p′ − pDISJn |1 ≤ ε,

B(p′) ≥ 2εn−log2(4/9) 1− 46ε
90 .

More precisely, Theorem 12 gives an explicit construction of such a Bell inequality: we can
define B as:

Ba,b,x,y =


−2εn−log2(4/9)µ(x, y) if DISJn(x, y) = 0 and a⊕ b = 1
1
452εn−log2(4/9)µ(x, y) if DISJn(x, y) = 1 and a⊕ b = 1
0 otherwise.

To obtain Proposition 14, we use Corollary 9 together with the fact that Qε′(DISJn) =
O(
√
n).

C.2 Tribes
Let n = (2r + 1)2 with r ≥ 2 and let TRIBESn : {0, 1}n × {0, 1}n → {0, 1} be defined as:

TRIBESn(x, y) :=

√
n∧

i=1

√n∨
j=1

(x(i−1)
√
n+j and y(i−1)

√
n+j)

 .

In [16][Sec. 3] the following is proven:

I Lemma 23. There exists a probability distribution µ on {0, 1}n × {0, 1}n for which there
exist numbers α, λ, γ, δ > 0 such that for sufficiently large n and for any rectangle R in the
input space:

γµ(U1 ∩R) ≥ αµ(V1 ∩R)− λµ(V2 ∩R)− 2−δn/2+1

where U1 = TRIBES−1
n (0), {V1, V2} forms a partition of TRIBES−1

n (1) and µ(U1) = 1 −
7β2/16, µ(V1) = 6β2/16, µ(V2) = β2/16 with β = r+2

r+1 .

In [16], the coefficients are α = 0.99, λ = 16
3(0.99)2 and γ = 16

(0.99)2 (the authors say these
values have not been optimized).

Combining this result with our Theorem 12 (taking z = 1, i = 1, j = 2, U1, V1, V2 as in
Lemma 23, u1 = γ, v1 = α, v2 = −λ, and g(n) = 2−δn/2+1), we obtain:



S. Laplante, M. Laurière, A. Nolin, J. Roland, and G. Senno 5:21

I Corollary 24. There exists a Bell inequality satisfying: ∀` ∈ L⊥det, B(`) ≤ 1,

B(pTRIBESn) = 2δn/2−1 β
2

16 (6α− λ),

and for any distribution p′ ∈ P such that |p′ − pTRIBESn |1 ≤ ε,

B(p′) ≥ 2δn/2−1
[
β2

16 (6α− λ)− ε(γ(1− 7β2/16) + λβ2/16 + α6β2/16)
]
.

More precisely, Theorem 12 provides a Bell inequality B yielding this bound, defined as:

Ba,b,x,y =


−γ2δn/2−1µ(x, y) if (x, y) ∈ U1 and a⊕ b = 1
α2δn/2−1µ(x, y) if (x, y) ∈ V1 and a⊕ b = 1
−λ2δn/2−1µ(x, y) if (x, y) ∈ V2 and a⊕ b = 1
0 otherwise.

To obtain Proposition 15, we use Corollary 9 together with the fact that Qε′(TRIBESn) =
O(
√
n(logn)2).

C.3 Gap Orthogonality
Let fn be the partial functions over {−1,+1}n × {−1,+1}n by fn(x, y) = ORT64n(x64, y64),
that is:

fn(x, y) =
{
−1 if |〈x, y〉| ≤

√
n/8

+1 if |〈x, y〉| ≥
√
n/4.

In [41], Sherstov proves the following result.

I Lemma 25 ([41]). Let δ > 0 be a sufficiently small constant and µ the uniform measure
over {0, 1}n ×{0, 1}n. Then, µ(f−1

n (+1)) = Θ(1) and for all rectangle R in {0, 1}n ×{0, 1}n
such that µ(R) > 2−δn,

µ(R ∩ f−1
n (+1)) ≥ δµ(R ∩ f−1

n (−1)).

This implies that if we put uniform weight on inputs of ORT64n of the form (x64, y64) and
put 0 weight on the others, we get a distribution µ′ satisfying the constraints of Corollary 20
for ORT64n together with γ = δ from Lemma 4 and g(64n) = 2δn.

To get a distribution satisfying the constraints of Corollary 20 on inputs of ORT64n+l for
all 0 ≤ l ≤ 63 we extend µ′ as follows:

µ̃(xu, yv) =


µ′(x, y) if u = +1l, v = −1l and

(
〈x, y〉 < −

√
64n or 0 ≤ 〈x, y〉 ≤

√
64n

)
µ′(x, y) if u = +1l, v = +1l and

(
−
√

64n ≤ 〈x, y〉 < 0 or 〈x, y〉 >
√

64n
)

0 otherwise

Using this distribution µ̃ together with γ = δ from Lemma 25 and with g(n) = 2−δn we
obtain, from Corollary 20, a Bell inequality violation for ORT64n+l for all 0 ≤ l ≤ 63:

I Corollary 26. There exists a Bell inequality B satisfying: ∀` ∈ L⊥det, B(`) ≤ 1,

B(pORT64n+l) = 2δnδµ̃(ORT−1
64n+l(−1)),

and for any distribution p′ ∈ P such that |p′ − pORT64n+l |1 ≤ ε,

B(p′) ≥ 2δn
(
δµ̃(ORT−1

64n+l(−1))− ε
[
δµ̃(ORT−1

64n+l(−1)) + µ̃(ORT−1
64n+l(+1))

])
.
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More precisely, Theorem 12 gives an explicit construction of such a Bell inequality: we can
define B as:

Ba,b,x,y =


−2δnµ̃(x, y) if (x, y) ∈ ORT−1

64n+l(+1) and a⊕ b = −1
δ2δnµ̃(x, y) if (x, y) ∈ ORT−1

64n+l(−1) and a⊕ b = −1
0 otherwise.

To obtain Proposition 16, we use Corollary 9 together with the fact that Qε′(ORTn) =
O(
√
n logn).

D Equivalent formulations of the efficiency bounds

In [27], the zero-error efficiency bound was defined in its primal and dual forms as follows

I Definition 27 ([27]). The efficiency bound of a distribution p ∈ P is given by

eff(p) = min
ζ,µ`≥0

1
ζ

subject to
∑
`∈L⊥

det

µ``(a, b|x, y) = ζp(a, b|x, y) ∀(a, b, x, y) ∈ A×B×X×Y

∑
`∈L⊥

det

µ` = 1

= max
B

B(p)

subject to B(`) ≤ 1 ∀` ∈ L⊥det

The ε-error efficiency bound was in turn defined as minp′∈P|p′−p|1≤ε eff(p′). In this
appendix, we show that this is equivalent to the definition used in the present article
(Definition 3). In the original definition, the Bell functional could depend on the particular
p′. We show that it is always possible to satisfy the constraint with the same Bell functional
for all p′ close to p.

In order to prove this, we will need the following notions.

I Definition 28. A distribution error ∆ is a family of additive error terms ∆(a, b|x, y) ∈
[−1, 1] for all (a, b, x, y) ∈ A×B×X×Y such that∑

a,b

∆(a, b|x, y) = 0 ∀(x, y) ∈ X × Y.

For any 0 ≤ ε ≤ 1, the set ∆ε is the set of distribution errors ∆ such that∑
a,b

|∆(a, b|x, y)| ≤ ε ∀(x, y) ∈ X × Y.

This set is a polytope, so it admits a finite set of extremal points. We denote this set by
∆ext
ε .

We will use the following properties of ∆ε.

I Fact 29. For any distribution p ∈ P, we have

{p′ ∈ P| |p′ − p|1 ≤ ε} ⊆ {p + ∆| ∆ ∈ ∆ε}
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The reason why the set on the right hand side might be larger is that p + ∆ might not be a
valid distribution. In order to ensure that this is the case, it is sufficient to impose that all
obtained purposed probabilities are nonnegative, leading to the following property.

I Fact 30. For any distribution p ∈ P, we have

{p′ ∈ P| |p′ − p|1 ≤ ε} = {p + ∆| ∆ ∈ ∆ε & p(a, b|x, y) + ∆(a, b|x, y) ≥ 0 ∀a, b, x, y}

We are now ready to prove the following theorem.

I Theorem 31. Let p ∈ P be a distribution, effε(p) be defined as in Definition 3 and
eff(p) be defined as in Definition 27. Then, we have

effε(p) = min
p′∈P:|p′−p|1≤ε

eff(p′).

Proof. Let effε(p) = minp′∈P:|p′−p|1≤ε eff(p′). We first show that effε(p) ≤ effε(p).
Let (B, β) be an optimal feasible point for effε(p), so that

effε(p) = β,

B(p′) ≥ β ∀p′ s.t. |p′ − p|1 ≤ ε,
B(`) ≤ 1 ∀` ∈ L⊥det.

Therefore (B, β) is also a feasible point for eff(p′) for all p′ ∈ P such that |p′ − p|1 ≤ ε, so
that eff(p′) ≥ β for all such p′, and effε(p) ≥ β = effε(p).

It remains to show that effε(p) ≥ effε(p). In order to do so, we first use the primal
form of eff(p′) in Definition 27 to express effε(p) as follows

effε(p) = min
p′∈P

s.t |p′−p|1≤ε

eff(p′)

= min
ζ,µ`≥0,p′∈P

1
ζ

subject to
∑
`∈L⊥

det

µ``(a, b|x, y) = ζp′(a, b|x, y) ∀(a, b, x, y) ∈ A×B×X×Y

∑
`∈L⊥

det

µ` = 1, |p′ − p|1 ≤ ε

= min
ζ,µ`≥0,∆∈∆ε

1
ζ

subject to
∑
`∈L⊥

det

µ``(a, b|x, y) =

ζ[p(a, b|x, y) + ∆(a, b|x, y)] ∀(a, b, x, y) ∈ A×B×X×Y∑
`∈L⊥

det

µ` = 1,

where the last equality follows from Fact 30 and the fact that the first condition of the program
imposes that p(a, b|x, y) + ∆(a, b|x, y) is nonnegative (since

∑
` µ``(a, b|x, y) is nonnegative).
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Since ∆ε is a polytope, effε(p) can be expressed as the following linear program

effε(p) = min
ζ,µ`≥0,ν∆≥0

1
ζ

subject to
∑
`∈L⊥

det

µ``(a, b|x, y) = ζ[p(a, b|x, y)+

∑
∆∈∆ext

ε

ν∆∆(a, b|x, y)] ∀(a, b, x, y) ∈ A×B×X×Y

∑
`∈L⊥

det

µ` = 1,
∑

∆∈∆ext
ε

ν∆ = 1.

Note that this can be written in standard LP form via the change of variables µ` = ζw`. By
LP duality, we then obtain

effε(p) = max
B,β

β

subject to B(p + ∆) ≥ β ∀∆ ∈ ∆ε,

B(`) ≤ 1 ∀` ∈ L⊥det.

Comparing this to the definition of effε(p) (Definition 3) and together with Fact 29, we
therefore have effε(p) ≤ effε(p). J
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