187 research outputs found

    Fast-slow asymptotic for semi-analytical ignition criteria in FitzHugh-Nagumo system

    Get PDF
    We study the problem of initiation of excitation waves in the FitzHugh-Nagumo model. Our approach follows earlier works and is based on the idea of approximating the boundary between basins of attraction of propagating waves and of the resting state as the stable manifold of a critical solution. Here, we obtain analytical expressions for the essential ingredients of the theory by singular perturbation using two small parameters, the separation of time scales of the activator and inhibitor, and the threshold in the activator's kinetics. This results in a closed analytical expression for the strength-duration curve.Comment: 10 pages, 5 figures, as accepted to Chaos on 2017/06/2

    Neuron dynamics in the presence of 1/f noise

    Full text link
    Interest in understanding the interplay between noise and the response of a non-linear device cuts across disciplinary boundaries. It is as relevant for unmasking the dynamics of neurons in noisy environments as it is for designing reliable nanoscale logic circuit elements and sensors. Most studies of noise in non-linear devices are limited to either time-correlated noise with a Lorentzian spectrum (of which the white noise is a limiting case) or just white noise. We use analytical theory and numerical simulations to study the impact of the more ubiquitous "natural" noise with a 1/f frequency spectrum. Specifically, we study the impact of the 1/f noise on a leaky integrate and fire model of a neuron. The impact of noise is considered on two quantities of interest to neuron function: The spike count Fano factor and the speed of neuron response to a small step-like stimulus. For the perfect (non-leaky) integrate and fire model, we show that the Fano factor can be expressed as an integral over noise spectrum weighted by a (low pass) filter function. This result elucidates the connection between low frequency noise and disorder in neuron dynamics. We compare our results to experimental data of single neurons in vivo, and show how the 1/f noise model provides much better agreement than the usual approximations based on Lorentzian noise. The low frequency noise, however, complicates the case for information coding scheme based on interspike intervals by introducing variability in the neuron response time. On a positive note, the neuron response time to a step stimulus is, remarkably, nearly optimal in the presence of 1/f noise. An explanation of this effect elucidates how the brain can take advantage of noise to prime a subset of the neurons to respond almost instantly to sudden stimuli.Comment: Phys. Rev. E in pres

    On the simulation of nonlinear bidimensional spiking neuron models

    Full text link
    Bidimensional spiking models currently gather a lot of attention for their simplicity and their ability to reproduce various spiking patterns of cortical neurons, and are particularly used for large network simulations. These models describe the dynamics of the membrane potential by a nonlinear differential equation that blows up in finite time, coupled to a second equation for adaptation. Spikes are emitted when the membrane potential blows up or reaches a cutoff value. The precise simulation of the spike times and of the adaptation variable is critical for it governs the spike pattern produced, and is hard to compute accurately because of the exploding nature of the system at the spike times. We thoroughly study the precision of fixed time-step integration schemes for this type of models and demonstrate that these methods produce systematic errors that are unbounded, as the cutoff value is increased, in the evaluation of the two crucial quantities: the spike time and the value of the adaptation variable at this time. Precise evaluation of these quantities therefore involve very small time steps and long simulation times. In order to achieve a fixed absolute precision in a reasonable computational time, we propose here a new algorithm to simulate these systems based on a variable integration step method that either integrates the original ordinary differential equation or the equation of the orbits in the phase plane, and compare this algorithm with fixed time-step Euler scheme and other more accurate simulation algorithms

    Numerical Solution of Differential Equations by the Parker-Sochacki Method

    Get PDF
    A tutorial is presented which demonstrates the theory and usage of the Parker-Sochacki method of numerically solving systems of differential equations. Solutions are demonstrated for the case of projectile motion in air, and for the classical Newtonian N-body problem with mutual gravitational attraction.Comment: Added in July 2010: This tutorial has been posted since 1998 on a university web site, but has now been cited and praised in one or more refereed journals. I am therefore submitting it to the Cornell arXiv so that it may be read in response to its citations. See "Spiking neural network simulation: numerical integration with the Parker-Sochacki method:" J. Comput Neurosci, Robert D. Stewart & Wyeth Bair and http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2717378

    A simple self-organized swimmer driven by molecular motors

    Get PDF
    We investigate a self-organized swimmer at low Reynolds numbers. The microscopic swimmer is composed of three spheres that are connected by two identical active linker arms. Each linker arm contains molecular motors and elastic elements and can oscillate spontaneously. We find that such a system immersed in a viscous fluid can self-organize into a state of directed swimming. The swimmer provides a simple system to study important aspects of the swimming of micro-organisms.Comment: 6 pages, 4 figure

    Multiscale Computations on Neural Networks: From the Individual Neuron Interactions to the Macroscopic-Level Analysis

    Full text link
    We show how the Equation-Free approach for multi-scale computations can be exploited to systematically study the dynamics of neural interactions on a random regular connected graph under a pairwise representation perspective. Using an individual-based microscopic simulator as a black box coarse-grained timestepper and with the aid of simulated annealing we compute the coarse-grained equilibrium bifurcation diagram and analyze the stability of the stationary states sidestepping the necessity of obtaining explicit closures at the macroscopic level. We also exploit the scheme to perform a rare-events analysis by estimating an effective Fokker-Planck describing the evolving probability density function of the corresponding coarse-grained observables

    Switching Time Statistics for Driven Neuron Models: Analytic Expressions versus Numerics

    Full text link
    Analytical expressions are put forward to investigate the forced spiking activity of abstract neuron models such as the driven leaky integrate-and-fire (LIF) model. The method is valid in a wide parameter regime beyond the restraining limits of weak driving (linear response) and/or weak noise. The novel approximation is based on a discrete state Markovian modeling of the full dynamics with time-dependent rates. The scheme yields very good agreement with numerical Langevin and Fokker-Planck simulations of the full non-stationary dynamics for both, the first-passage time statistics and the interspike interval (residence time) distributions.Comment: 4 pages, 4 figures, RevTeX4 used, final versio
    • …
    corecore