189 research outputs found

    The analysis of onion and garlic

    Get PDF
    Onion (Allium cepa L.) and garlic (Allium sativum L.), among the oldest cultivated plants, are used both as a food and for medicinal applications. In fact, these common food plants are a rich source of several phytonutrients recognized as important elements of the Mediterranean diet, but are also used in the treatment and prevention of a number of diseases, including cancer, coronary heart disease, obesity, hypercholesterolemia, diabetes type 2, hypertension, cataract and disturbances of the gastrointestinal tract (e.g. colic pain, flatulent colic and dyspepsia). These activities are related to the thiosulfinates, volatile sulfur compounds, which are also responsible for the pungent of these vegetables. Besides these low-molecular weight compounds, onion and garlic are characterized by more polar compounds of phenolic and steroidal origin, often glycosilated, showing interesting pharmacological properties. These latter compounds, compared to the more studied thiosulfinates, present the advantages to be not pungent and more stable to cooking. Recently, there has been an increasing scientific attention on such compounds. In this paper, the literature about the major volatile and non-volatile phytoconstituents of onion and garlic has been reviewed. Particular attention was given to the different methodology developed to perform chemical analysis, including separation and structural elucidation. (c) 2005 Elsevier B.V. All rights reserved

    Metabolomic analysis by UAE-GC MS and antioxidant activity of <i>Salvia hispanica </i>(L.) seeds grown under different irrigation regimes

    Get PDF
    Chia (Salvia hispanica L.) is an emerging crop with a high content of α-linolenic acid and metabolites of industrial and pharmaceutical interest but information on metabolome variations in response to agricultural management is scarce. We investigated the yield and metabolic profile of the seeds of two chia populations, one commercial black (B) and one long-day flowering genotype (G8), in response to two irrigation levels: replacement of 100% ET⁠0 (I) or rainfed (NI). Seed yield was higher in irrigated plots in G8 only (0.255kgm⁠−2 for I vs 0.184kgm⁠−2 for NI) while it was very low regardless of irrigation in B due to late flowering. Ultrasound assisted extraction (UAE) of seeds followed by gas chromatography-mass spectrometry (GC/MS) analysis showed differences in fatty acids and the major classes of organic compounds due to both genotype and irrigation, especially in the non-polar phase where irrigated samples showed a higher content of α-linolenic and other fatty acids and a lower oleic/linoleic ratio (47.4 in NI vs. 39.6 in I). The antioxidant activity, expressed as trolox equivalent antioxidant capacity (TEAC), ranged from 1.317±0.027 to 2.174±0.010mmol TEAC/g of defatted chia seed after 2 and 40min respectively, and was negatively affected by irrigation. The total polyphenolic content (TPC) measured with the Folin-Ciocalteu method, also decreased with irrigation. According to our results irrigation can affect chia yield, metabolome and antioxidant behavior but some of the effects are genotype-dependent

    Metabolomics driven analysis by UAEGC-MS and antioxidant activity of Chia (<i>Salvia hispanica </i>L.) commercial and mutant seeds

    Get PDF
    Chia is a food plant producing seeds which have seen increasing interest owing to their health benefits. This work is the first report on the metabolite profile, total polyphenols and antioxidant activity of chia seeds, determined by ultrasound-assisted extraction, coupled with gas chromatography-mass spectrometry (UAE GC-MS). Different chia sources were compared: two commercial (black and white) and three early flowering (G3, G8 and G17) mutant genotypes. Organic extracts were mainly composed of mono- and polyunsaturated fatty acids with alpha-linolenic being the most abundant. Polar extracts contained sucrose, methylgalactoside and glucose as main sugars. Antioxidant activity and total polyphenolic content were correlated. Chemical composition and yield potential of early flowering genotypes were different from commercial chia, and while white chia showed the highest content of omega-3 fatty acids, the high content of nutraceuticals in G17 and G8 suggests them as a potential source of raw materials for the food/feed industry

    Antispasmodic saponins from bulbs of red onion, Allium cepa L. var. Tropea

    Get PDF
    A phytochemical analysis of the polar extract from the red bulbs of Allium cepa L. var. Tropea, typical of Calabria, a southern region of Italy, was performed extensively for the first time, leading to the isolation of four new furostanol saponins, named tropeoside A1/A2 (1a/1b) and tropeoside B1/B2 (3a/3b), along with the respective 22-O-methyl derivatives (2a/2b and 4a/4b), almost certainly extraction artifacts. High concentrations of ascalonicoside A1/A2 (5a/5b) and ascalonicoside B (6), previously isolated from Allium ascalonicum Hort., were also found. This is the first report of furostanol saponins in this A. cepa variety. The chemical structures of the new compounds were established through a combination of extensive nuclear magnetic resonance, mass spectrometry and chemical analyses. High concentrations of quercetin, quercetin 4(I)-glucoside, taxifolin, taxifolin 7-glucoside, and phenylalanine were also isolated. The new saponins were found to possess antispasmodic activity in the guinea pig isolated ileum; such an effect might contribute to explaining the traditional use of onion in the treatment of disturbances of the gastrointestinal tract

    Metabolomics and chemometrics of seven aromatic plants:carob, eucalyptus, laurel, mint, myrtle, rosemary and strawberry tree

    Get PDF
    Introduction: Arbutus unedo L. (strawberry tree), Ceratonia siliqua L. (carob), Eucalyptus camaldulensis Dehnh. (eucalyptus), Laurus nobilis L. (laurel), Mentha aquatica L. (water mint), Myrtus communis L. (common myrtle), and Rosmarinus officinalis L. (rosemary) are aromatic plants from the Mediterranean region whose parts and preparations are used for their nutritional properties and health benefits. Objectives: To evaluate and compare the metabolites profile, total phenol content (TPC), and antioxidant activity of plant leaves for their future use. Gas chromatography–mass spectrometry (GC–MS) was used for metabolomics. Data comparison was performed by chemometrics. Methodology: Polar and apolar extracts were analysed using untargeted GC–MS metabolomics followed by chemometrics (principal component analysis, heatmap correlation and dendrogram) to identify, quantify and compare the major organic compounds in the plants. Additionally, nuclear magnetic resonance (NMR) spectroscopy was used for the laurel polar extract to identify d-gluco-l-glycero-3-octulose whose presence was unclear from the GC–MS data. TPC and antioxidant assays were performed using classical methods (Folin–Ciocalteu, 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH)) and correlated to the phytochemical profiles. Results: Forty-three metabolites were identified including amino acids, organic acids, carbohydrates, phenols, polyols, fatty acids, and alkanes. Eight metabolites (d-fructose, d-glucose, d-mannose, gallic acid, quinic acid, myo-inositol, palmitic and stearic acids) were in common between all species. d-Gluco-l-glycero-3-octulose (37.29 ± 1.19%), d-pinitol (31.33 ± 5.12%), and arbutin (1.30 ± 0.44%,) were characteristic compounds of laurel, carob, and strawberry tree, respectively. Carob showed the highest values of TPC and antioxidant activity. Conclusion: GC–MS metabolomics and chemometrics analyses are fast and useful methods to determine and compare the metabolomics profiling of aromatic plants of food and industrial interest.</p

    Spectroscopic and multivariate data-based method to assess the metabolomic fingerprint of Mediterranean plants

    Get PDF
    Introduction: Most secondary metabolites from plants have a prominent defensive role and repellency against predators and microbial pathogens. These properties largely vary among plant species and offer potential applications as biologically active compounds in medicine as well in agriculture. Objectives: We propose a new procedure that combine different spectroscopic techniques and multivariate data analysis to determine the chemical composition and the relative amounts of each metabolites and/or each class of organic compounds. The approach was used for a rapid identification of secondary metabolites from leaf and root of eight Mediterranean plants species. Methodology: The polar and the apolar extracts of two leaves and roots of each plant were analysed by proton nuclear magnetic resonance (1H-NMR) and gas chromatography coupled to mass spectrometry (GC–MS), respectively. Multivariate data analysis was used for a faster interpretation of data. Results: The metabolic fingerprint of the Mediterranean plants, Acanthus mollis, Dittrichia viscosa, Festuca drymeja, Fraxinus ornus, Fagus sylvatica, Hedera helix, Quercus ilex, and Typha latifolia, showed a complex chemical composition, being specific for each species and plant tissue. Two alditols, mannitol and quercitol, were found in manna ash (Fraxinus ornus) and holm oak (Q. ilex) polar leaf extracts, respectively. The highest levels of aromatic compounds were found in D. viscosa and T. latifolia. Fatty acids were the predominant class of compounds in all apolar extracts under investigation. Triterpene were almost exclusively found in roots, except for holm oak, where they constitute 58% of total extract. Steroids were widespread in leaf extracts. Conclusion: The major advantages of the proposed approach are versatility and rapidity, thus making it suitable for a fast comparison among species and plant tissue types.</p

    Metabolomic analysis and antioxidant activity of wild type and mutant Chia (Salvia hispanica L.) stem and flower grown under different irrigation regimes

    Get PDF
    BACKGROUND: Chia (Salvia hispanica L.) is a functional food from Central America. Interest in it is growing rapidly due to the many health benefits from the seed. However, when chia is grown at high latitudes, seed yield may be low whereas a high stem biomass and immature inflorescences are produced. Little is known about the chemical composition and the properties of stems and flowers. In this work, the metabolite profile, the antioxidant activity, and the total polyphenol content of stems and inflorescences were evaluated in a factorial experiment with different chia populations (commercial black chia and long-day flowering mutants G3, G8, and G17) and irrigation (100% and 50% of evapotranspiration).RESULTS: The results show the influence of irrigation and seed source on the antioxidant activity and total polyphenol content of chia flower and stem. Inflorescences exhibit higher antioxidant activity, suggesting their potential use as natural antioxidant. The mutants G3 and G8, at 50% irrigation, contained the highest amounts of compounds with nutraceutical value, especially within the flower. The mutant G17 showed lower antioxidant activity and polyphenol content compared to other seed sources but exhibited high omega 3 content in flowers but low in stems. This indicates that chia varieties should be chosen according to the objective of cultivation.CONCLUSION: These findings, indicating a close relation of metabolite content with irrigation and seed source, may provide the basis for the use of chia flower and stem for their nutraceutical value in the food, feed, and supplement industries.</p

    Metabolomics approach based on NMR spectroscopy and multivariate data analysis to explore the interaction between the leafminer<i> Tuta absoluta</i> and tomato (<i>Solanum lycopersicum</i>)

    Get PDF
    Introduction: Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is one of the most devastating and harmful pests of tomato (Solanum lycopersicum) crops causing up to 80–100% yield losses. A large arsenal of plant metabolites is induced by the leafminer feeding including defence compounds that could differ among varieties. Objective: To compare the metabolomic changes of different genotypes of tomato (tolerant “T”, susceptible “S” and “F1” hybrid obtained between T and S) after exposition to T. absoluta. Methodology: Nuclear magnetic resonance (NMR) spectroscopy followed by multivariate data analysis were performed to analyse the metabolic profiles of control and infested samples on three different tomato genotypes.Results: Signals related to GABA (γ-aminobutyric acid) were relatively much higher in all infested samples compared to the non-infested plants used as control. Infested T genotype samples were the most abundant in organic acids, including fatty acids and acyl sugars, chlorogenic acid, neo-chlorogenic acid and feruloyl quinic acid, indicating a clear link between the exposure to leafminer. Results also showed an increase of trigonelline in all tomato varieties after exposition to T. absoluta. Conclusion: Metabolomics approach based on NMR spectroscopy followed by multivariate data analysis allowed for a detailed metabolite profile of plant defences, providing fundamental information for breeding programmes in plant crops.</p

    Jatrophane diterpenes as modulators of multidrug resistance. Advances of structure-activity relationships and discovery of the potent lead pepluanin A

    Get PDF
    From the whole plant of Euphorbia peplus L., five new diterpenes based on a jatrophane skeleton (pepluanins A-E, 1-5) were isolated, together with two known analogues (6 and 7), which served to divulge in detail the structure-activity relationships within this class of P-glycoprotein inhibitors. The results revealed the importance of substitutions on the medium-sized ring (carbons 8, 9, 14, and 15). In particular, the activity is collapsed by the presence of a free hydroxyl at C-8, while it increases with a carbonyl at C-14, an acetoxyl at C-9, and a free hydroxyl at C-15. The most potent compound of the series, pepluanin A, showed a very high activity for a jatrophane diterpene, outperforming cyclosporin A by a factor of at least 2 in the inhibition of Pgp-mediated daunomycin transport
    corecore