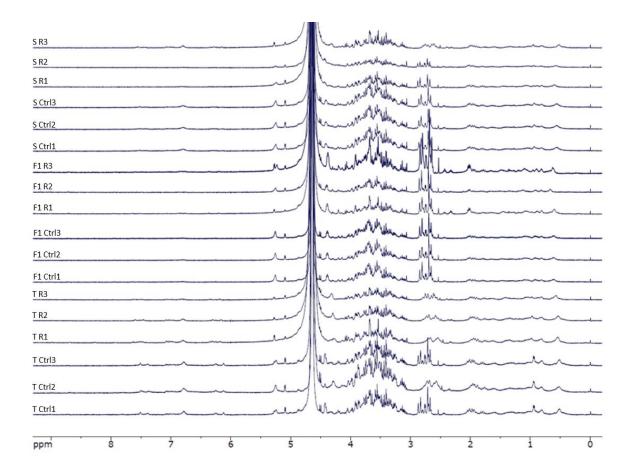
Metabolomics approach based on NMR spectroscopy and multivariate data analysis to explore interaction between the leafminer *Tuta absoluta* and tomato, *Solanum lycopersicum*

Bruna de Falco^{a,b}, Daniele Manzo^a, Guido Incerti^c, Antonio Pietro Garonna^a Maria Ercolano^a and Virginia Lanzotti^a

^a Department of Agricultural Sciences, University of Naples Federico II, Via Università 100,
80055 Portici, Naples, Italy


^b School of Science, Engineering & Technology, Division of Food & Drink, University of Abertay, Bell Street, DD1 1HG Dundee, Scotland, UK

^c Department of Agri-Food, Animal and Environmental Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy

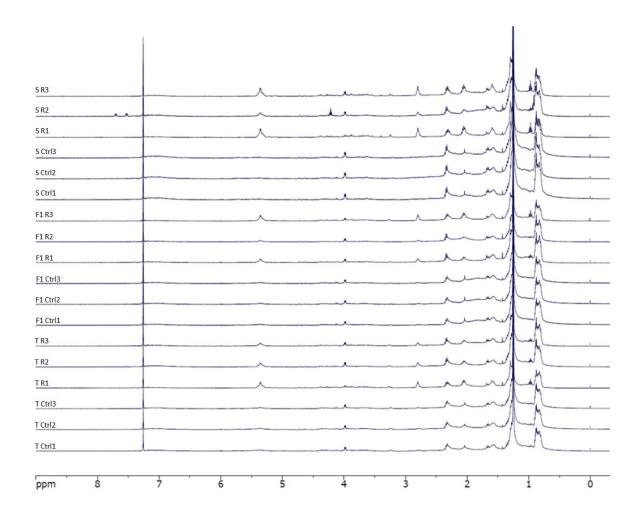

Supplementary Materials

Figure S1. ¹H-NMR triplicate spectra (400 MHz, D2O) of polar extracts.

Figure S2. ¹H-NMR triplicate spectra (400 MHz, CDCl₃) of non-polar extracts.

Figure S1. ¹H-NMR spectra (400 MHz, D₂O) of the polar extracts of three tomato genotypes: T, tolerant (BR221); F1, hybrid (CS823); S, susceptible (PS650), infested with *Tuta absoluta* (R) and non-infested control samples (Ctrl). Natural numbers indicate replicates.

Figure S2. ¹H-NMR spectra (400 MHz, CDCl₃) of the non-polar extract of three tomato genotypes: T, tolerant (BR221); F1, hybrid (CS823); S, susceptible (PS650), infested with *Tuta absoluta* (R) and non-infested control samples (Ctrl). Natural numbers indicate replicates.