74 research outputs found

    Targeted silencing of CDX2 gene with siRNA enhanced vincristine-induced inhibition of proliferation and induction of apoptosis of leukemia K562 cells

    Get PDF
    Purpose: To determine the effect of targeted silencing of CDX2 with siRNA on vincristine-induced inhibition of proliferation and apoptosis induction in leukemia K562 cells. Methods: K562 cells were divided into untreated group, vincristine group, blank group, and CDX2-siRNA group. The expression of CDX2 gene after CDX2-siRNA transfection was determined by reverse-transcription-polymerase chain reaction (RT-PCR) and immunoblotting, while MTT and flow cytometric procedures were used to evaluate the effect of vincristine on proliferation and apoptotic changes in K562 cells. Results: Protein expression of CDX2 did not change significantly in non-treated cells, vincristine group and blank group, while the expression of CDX2 protein in cells of CDX2-siRNA group was decreased significantly (p < 0.05) while MTT assay results showed that the absorbance of CDX2-siRNA cells was significantly lower than those of the other three groups at 12, 24 and 48 h after CDX2 gene silencing. Flow cytometry showed markedly higher percentage apoptosis of CDX2-siRNA group than in other groups at 12, 24 and 48 h after CDX2 gene silencing. There was no difference in apoptosis level between vincristine group and blank group, but apoptosis was higher in these groups than in untreated group (p < 0.05). Conclusion: Silencing CDX2 gene via targeting with siRNA enhances vincristine-induced suppression of growth and apoptotic changes in leukemia K562 cells, thereby enhancing the anti-tumor effect of vincristine

    Binary Matrix Shuffling Filter for Feature Selection in Neuronal Morphology Classification

    Get PDF
    A prerequisite to understand neuronal function and characteristic is to classify neuron correctly. The existing classification techniques are usually based on structural characteristic and employ principal component analysis to reduce feature dimension. In this work, we dedicate to classify neurons based on neuronal morphology. A new feature selection method named binary matrix shuffling filter was used in neuronal morphology classification. This method, coupled with support vector machine for implementation, usually selects a small amount of features for easy interpretation. The reserved features are used to build classification models with support vector classification and another two commonly used classifiers. Compared with referred feature selection methods, the binary matrix shuffling filter showed optimal performance and exhibited broad generalization ability in five random replications of neuron datasets. Besides, the binary matrix shuffling filter was able to distinguish each neuron type from other types correctly; for each neuron type, private features were also obtained

    Binary Matrix Shuffling Filter for Feature Selection in Neuronal Morphology Classification

    Get PDF
    A prerequisite to understand neuronal function and characteristic is to classify neuron correctly. The existing classification techniques are usually based on structural characteristic and employ principal component analysis to reduce feature dimension. In this work, we dedicate to classify neurons based on neuronal morphology. A new feature selection method named binary matrix shuffling filter was used in neuronal morphology classification. This method, coupled with support vector machine for implementation, usually selects a small amount of features for easy interpretation. The reserved features are used to build classification models with support vector classification and another two commonly used classifiers. Compared with referred feature selection methods, the binary matrix shuffling filter showed optimal performance and exhibited broad generalization ability in five random replications of neuron datasets. Besides, the binary matrix shuffling filter was able to distinguish each neuron type from other types correctly; for each neuron type, private features were also obtained

    Frailty in hypertensive population and its association with all-cause mortality: data from the National Health and Nutrition Examination Survey

    Get PDF
    ObjectivesThis study aimed to investigate the relationship between frailty and all-cause mortality in hypertensive population.MethodsWe used data from the National Health and Nutrition Examination Survey (NHANES) 1999–2002 and mortality data from the National Death Index. Frailty was assessed using the revised version of the Fried frailty criteria (weakness, exhaustion, low physical activity, shrinking, and slowness). This study aimed to evaluate the association between frailty and all-cause mortality. Cox proportional hazard models were used to evaluate the association between frailty category and all-cause mortality, adjusted for age, sex, race, education, poverty–income ratio, smoking, alcohol, diabetes, arthritis, congestive heart failure, coronary heart disease, stroke, overweight, cancer or malignancy, chronic obstructive pulmonary disease, chronic kidney disease, and taking medicine for hypertension.ResultsWe gathered data of 2,117 participants with hypertension; 17.81%, 28.77%, and 53.42% were classified as frail, pre-frail, and robust, respectively. We found that frail [hazard ratio (HR) = 2.76, 95% confidence interval (CI) = 2.33–3.27] and pre-frail (HR = 1.38, 95% CI = 1.19–1.59] were significantly associated with all-cause mortality after controlling for variables. We found that frail (HR = 3.02, 95% CI = 2.50–3.65) and pre-frail (HR = 1.35, 95% CI = 1.15–1.58) were associated with all-cause mortality in the age group ≥65 years. For the frailty components, weakness (HR = 1.77, 95% CI = 1.55–2.03), exhaustion (HR = 2.25, 95% CI = 1.92–2.65), low physical activity (HR = 2.25, 95% CI = 1.95–2.61), shrinking (HR = 1.48, 95% CI = 1.13–1.92), and slowness (HR = 1.44, 95% CI = 1.22–1.69) were associated with all-cause mortality.ConclusionThis study demonstrated that frailty and pre-frailty were associated with an increased risk of all-cause mortality in patients with hypertension. More attention should be paid to frailty in hypertensive patients, and interventions to reduce the burden of frailty may improve outcomes in these patients

    QTL Mapping of Combining Ability and Heterosis of Agronomic Traits in Rice Backcross Recombinant Inbred Lines and Hybrid Crosses

    Get PDF
    BACKGROUND: Combining ability effects are very effective genetic parameters in deciding the next phase of breeding programs. Although some breeding strategies on the basis of evaluating combining ability have been utilized extensively in hybrid breeding, little is known about the genetic basis of combining ability. Combining ability is a complex trait that is controlled by polygenes. With the advent and development of molecular markers, it is feasible to evaluate the genetic bases of combining ability and heterosis of elite rice hybrids through QTL analysis. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we first developed a QTL-mapping method for dissecting combining ability and heterosis of agronomic traits. With three testcross populations and a BCRIL population in rice, biometric and QTL analyses were conducted for ten agronomic traits. The significance of general combining ability and special combining ability for most of the traits indicated the importance of both additive and non-additive effects on expression levels. A large number of additive effect QTLs associated with performance per se of BCRIL and general combining ability, and dominant effect QTLs associated with special combining ability and heterosis were identified for the ten traits. CONCLUSIONS/SIGNIFICANCE: The combining ability of agronomic traits could be analyzed by the QTL mapping method. The characteristics revealed by the QTLs for combining ability of agronomic traits were similar with those by multitudinous QTLs for agronomic traits with performance per se of BCRIL. Several QTLs (1-6 in this study) were identified for each trait for combining ability. It demonstrated that some of the QTLs were pleiotropic or linked tightly with each other. The identification of QTLs responsible for combining ability and heterosis in the present study provides valuable information for dissecting genetic basis of combining ability

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Int. J. Hydrog. Energy

    No full text
    A novel aerobic and anaerobic sequential culture fermentation (AASF) method was designed to improve the conversion efficiency of steam-exploded cornstalk during biohydrogen production. The enzyme activities of cellulase and beta-glucosidase produced by Trichoderma viride ACCC 30169 were 76.79 FPU g(-1) dry weight and 45.23 IU g(-1) dry weight after 6-days steam-exploded cornstalk fermentation, respectively. The aerobic fermentation residue was used as the substrate for bio-hydrogen production by Clostridium butyricum AS1.209 anaerobic fermentation. The optimum solid-to-liquid ratio of the anaerobic fermentation substrate was 1:5. The maximum bio-hydrogen yield was attained on the medium with addition of 0.1 g g(-1) substrate urea after 2 days of aerobic fermentation. Compared with simultaneous saccharification and fermentation (SSF), AASF for biohydrogen production could shorten the fermentation period by at least 66% and the hydrogen yield reached 83% of the total volume after 24 h of anaerobic fermentation. AASF from steam-exploded cornstalk was an effective way for bio-hydrogen production without additional commercial cellulase. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.A novel aerobic and anaerobic sequential culture fermentation (AASF) method was designed to improve the conversion efficiency of steam-exploded cornstalk during biohydrogen production. The enzyme activities of cellulase and beta-glucosidase produced by Trichoderma viride ACCC 30169 were 76.79 FPU g(-1) dry weight and 45.23 IU g(-1) dry weight after 6-days steam-exploded cornstalk fermentation, respectively. The aerobic fermentation residue was used as the substrate for bio-hydrogen production by Clostridium butyricum AS1.209 anaerobic fermentation. The optimum solid-to-liquid ratio of the anaerobic fermentation substrate was 1:5. The maximum bio-hydrogen yield was attained on the medium with addition of 0.1 g g(-1) substrate urea after 2 days of aerobic fermentation. Compared with simultaneous saccharification and fermentation (SSF), AASF for biohydrogen production could shorten the fermentation period by at least 66% and the hydrogen yield reached 83% of the total volume after 24 h of anaerobic fermentation. AASF from steam-exploded cornstalk was an effective way for bio-hydrogen production without additional commercial cellulase. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved

    Appl. Biochem. Biotechnol.

    No full text
    Internal air circulation affects the temperature field distribution in a gas double-dynamic solid-state fermentation bioreactor (GDSFB). To enhance heat transfer through strengthening internal air circulation in a GDSFB, we put an air distribution plate (ADP) into the bioreactor and studied the effects of forced internal air circulation on airflow, heat transfer, and cellulase activity of Trichoderma viride L3. Results showed that ADP could help form a steady and uniform airflow distribution, and with gas-guide tubes, air reversal was formed inside the bioreactor, thus resulting in a smaller temperature difference between medium and air by enhancing convective heat transfer inside the bioreactor. Using an ADP of 5.35 % aperture ratio caused a 1 degrees C decrease in the average temperature difference during the solid-state fermentation process of T. viride L3. Meanwhile, the cellulase activity of T. viride L3 increased by 13.5 %. The best heat-transfer effect was attained when using an ADP of 5.35 % aperture ratio and setting the fan power to 125 V (4.81 W) in the gas double-dynamic solid-state fermentation (GDSF) process. An option of suitable aperture ratio and fan power may be conducive to ADPs' industrial amplification.Internal air circulation affects the temperature field distribution in a gas double-dynamic solid-state fermentation bioreactor (GDSFB). To enhance heat transfer through strengthening internal air circulation in a GDSFB, we put an air distribution plate (ADP) into the bioreactor and studied the effects of forced internal air circulation on airflow, heat transfer, and cellulase activity of Trichoderma viride L3. Results showed that ADP could help form a steady and uniform airflow distribution, and with gas-guide tubes, air reversal was formed inside the bioreactor, thus resulting in a smaller temperature difference between medium and air by enhancing convective heat transfer inside the bioreactor. Using an ADP of 5.35 % aperture ratio caused a 1 degrees C decrease in the average temperature difference during the solid-state fermentation process of T. viride L3. Meanwhile, the cellulase activity of T. viride L3 increased by 13.5 %. The best heat-transfer effect was attained when using an ADP of 5.35 % aperture ratio and setting the fan power to 125 V (4.81 W) in the gas double-dynamic solid-state fermentation (GDSF) process. An option of suitable aperture ratio and fan power may be conducive to ADPs' industrial amplification

    Neutral Dietary Effects of Two MicroRNAs, Csu-Novel-260 and Csu-Mir-14, on the Non-Target Arthropod <i>Folsomia candida</i>

    No full text
    RNA interference (RNAi) that is triggered by small or short RNAs has shown enormous potential in the development of pest control strategies. Two microRNAs (miRNAs), Csu-novel-260 and Csu-miR-14, were used in insect-resistant genetically engineered (IRGE) rice lines to confer resistance to Chilo suppressalis. However, a risk assessment of RNAi-based products is essential to determine the safety of a biopesticide or IRGE crop for commercialization. The non-target organism Folsomia candida, which plays an important ecological role as a soil decomposer in agricultural ecosystems, was used to assess the risk of miRNAs Csu-novel-260 and Csu-miR-14. In this study, a dietary miRNA toxicity assay system was established in F. candida. The expression levels of target genes, survival rate, fecundity and body size were investigated to evaluate the effects of the miRNAs on F. candida under the worst-case scenario. The results showed that the dietary miRNA toxicity assay system could be used for risk assessment of miRNA in F. candida. The target genes of miRNAs were influenced by miRNA at some time points. However, no significant differences were observed in the life-table parameters in F. candida fed with a diet containing miRNAs. The dietary effects of two miRNAs on F. candida are neutral
    corecore