231 research outputs found

    Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus

    Get PDF
    A diverse T cell repertoire is essential for a vigorous immune response to new infections, and decreasing repertoire diversity has been implicated in the age-associated decline in CD8 T cell immunity. In this study, using the well-characterized mouse influenza virus model, we show that although comparable numbers of CD8 T cells are elicited in the lung and lung airways of young and aged mice after de novo infection, a majority of aged mice exhibit profound shifts in epitope immunodominance and restricted diversity in the TCR repertoire of responding cells. A preferential decline in reactivity to viral epitopes with a low naive precursor frequency was observed, in some cases leading to “holes” in the T cell repertoire. These effects were also seen in young thymectomized mice, consistent with the role of the thymus in maintaining naive repertoire diversity. Furthermore, a decline in repertoire diversity generally correlated with impaired responses to heterosubtypic challenge. This study formally demonstrates in a mouse infection model that naturally occurring contraction of the naive T cell repertoire can result in impaired CD8 T cell responses to known immunodominant epitopes and decline in heterosubtypic immunity. These observations have important implications for the design of vaccine strategies for the elderly

    Multiple drugs compete for transport via the Plasmodium falciparum chloroquine resistance transporter at distinct but interdependent sites

    Get PDF
    Mutations in the "chloroquine resistance transporter" (PfCRT) are a major determinant of drug resistance in the malaria parasite Plasmodium falciparum. We have previously shown that mutant PfCRT transports the antimalarial drug chloroquine away from its target, whereas the wild-type form of PfCRT does not. However, little is understood about the transport of other drugs via PfCRT or the mechanism by which PfCRT recognizes different substrates. Here we show that mutant PfCRT also transports quinine, quinidine, and verapamil, indicating that the protein behaves as a multidrug resistance carrier. Detailed kinetic analyses revealed that chloroquine and quinine compete for transport via PfCRT in a manner that is consistent with mixed-type inhibition. Moreover, our analyses suggest that PfCRT accepts chloroquine and quinine at distinct but antagonistically interacting sites. We also found verapamil to be a partial mixed-type inhibitor of chloroquine transport via PfCRT, further supporting the idea that PfCRT possesses multiple substratebinding sites. Our findings provide new mechanistic insights into the workings of PfCRT, which could be exploited to design potent inhibitors of this key mediator of drug resistance

    Lipidomic profiling of adipose tissue reveals an inflammatory signature in cancer-related and primary Lymphedema

    Get PDF
    © 2016 Sedger et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Cancer-related and primary lymphedema (LE) are associated with the production of adipose tissue (AT). Nothing is known, however, about the lipid-based molecules that comprise LE AT. We therefore analyzed lipid molecules in lipoaspirates and serum obtained from LE patients, and compared them to lipoaspirates from cosmetic surgery patients and healthy control cohort serum. LE patient serum analysis demonstrated that triglycerides, HDL- and LDL-cholesterol and lipid transport molecules remained within the normal range, with no alterations in individual fatty acids. The lipidomic analysis also identified 275 lipid-based molecules, including triacylglycerides, diacylglycerides, fatty acids and phospholipids in AT oil and fat. Although the majority of lipid molecules were present in a similar abundance in LE and non-LE samples, there were several small changes: increased C20:5-containing triacylglycerides, reduced C10:0 caprinic and C24:1 nervonic acids. LE AT oil also contained a signature of increased cyclopropane-type fatty acids and inflammatory mediators arachidonic acid and ceramides. Interestingly C20:5 and C22:6 omega-3-type lipids are increased in LE AT, correlating with LE years. Hence, LE AT has a normal lipid profile containing a signature of inflammation and omega-3-lipids. It remains unclear, however, whether these differences reflect a small-scale global metabolic disturbance or effects within localised inflammatory foci

    Packing of elastic wires in spherical cavities

    Full text link
    We investigate the morphologies and maximum packing density of thin wires packed into spherical cavities. Using simulations and experiments, we find that ordered as well as disordered structures emerge, depending on the amount of internal torsion. We find that the highest packing densities are achieved in low torsion packings for large systems, but in high torsion packings for small systems. An analysis of both situations is given in terms of energetics and comparison is made to analytical models of DNA packing in viral capsids.Comment: 4 page

    Structure of the merozoite surface protein 1 from Plasmodium falciparum

    Get PDF
    The merozoite surface protein 1 (MSP-1) is the most abundant protein on the surface of the erythrocyte-invading Plasmodium merozoite, the causative agent of malaria. MSP-1 is essential for merozoite formation, entry into and escape from erythrocytes, and is a promising vaccine candidate. Here, we present monomeric and dimeric structures of full-length MSP-1. MSP-1 adopts an unusual fold with a large central cavity. Its fold includes several coiled-coils and shows structural homology to proteins associated with membrane and cytoskeleton interactions. MSP-1 formed dimers through these domains in a concentration-dependent manner. Dimerization is affected by the presence of the erythrocyte cytoskeleton protein spectrin, which may compete for the dimerization interface. Our work provides structural insights into the possible mode of interaction of MSP-1 with erythrocytes and establishes a framework for future investigations into the role of MSP-1 in Plasmodium infection and immunity

    Diverse mutational pathways converge on saturable chloroquine transport via the malaria parasite's chloroquine resistance transporter

    Get PDF
    Mutations in the chloroquine resistance transporter (PfCRT) are the primary determinant of chloroquine (CQ) resistance in the malaria parasite Plasmodium falciparum. A number of distinct PfCRT haplotypes, containing between 4 and 10 mutations, have give

    Acoustic cardiac triggering: a practical solution for synchronization and gating of cardiovascular magnetic resonance at 7 Tesla

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To demonstrate the applicability of acoustic cardiac triggering (ACT) for imaging of the heart at ultrahigh magnetic fields (7.0 T) by comparing phonocardiogram, conventional vector electrocardiogram (ECG) and traditional pulse oximetry (POX) triggered 2D CINE acquisitions together with (i) a qualitative image quality analysis, (ii) an assessment of the left ventricular function parameter and (iii) an examination of trigger reliability and trigger detection variance derived from the signal waveforms.</p> <p>Results</p> <p>ECG was susceptible to severe distortions at 7.0 T. POX and ACT provided waveforms free of interferences from electromagnetic fields or from magneto-hydrodynamic effects. Frequent R-wave mis-registration occurred in ECG-triggered acquisitions with a failure rate of up to 30% resulting in cardiac motion induced artifacts. ACT and POX triggering produced images free of cardiac motion artefacts. ECG showed a severe jitter in the R-wave detection. POX also showed a trigger jitter of approximately Δt = 72 ms which is equivalent to two cardiac phases. ACT showed a jitter of approximately Δt = 5 ms only. ECG waveforms revealed a standard deviation for the cardiac trigger offset larger than that observed for ACT or POX waveforms.</p> <p>Image quality assessment showed that ACT substantially improved image quality as compared to ECG (image quality score at end-diastole: ECG = 1.7 ± 0.5, ACT = 2.4 ± 0.5, p = 0.04) while the comparison between ECG vs. POX gated acquisitions showed no significant differences in image quality (image quality score: ECG = 1.7 ± 0.5, POX = 2.0 ± 0.5, p = 0.34).</p> <p>Conclusions</p> <p>The applicability of acoustic triggering for cardiac CINE imaging at 7.0 T was demonstrated. ACT's trigger reliability and fidelity are superior to that of ECG and POX. ACT promises to be beneficial for cardiovascular magnetic resonance at ultra-high field strengths including 7.0 T.</p
    corecore