1,457 research outputs found

    Entanglement growth in quench dynamics with variable range interactions

    Get PDF
    Studying entanglement growth in quantum dynamics provides both insight into the underlying microscopic processes and information about the complexity of the quantum states, which is related to the efficiency of simulations on classical computers. Recently, experiments with trapped ions, polar molecules, and Rydberg excitations have provided new opportunities to observe dynamics with long-range interactions. We explore nonequilibrium coherent dynamics after a quantum quench in such systems, identifying qualitatively different behavior as the exponent of algebraically decaying spin-spin interactions in a transverse Ising chain is varied. Computing the build-up of bipartite entanglement as well as mutual information between distant spins, we identify linear growth of entanglement entropy corresponding to propagation of quasiparticles for shorter range interactions, with the maximum rate of growth occurring when the Hamiltonian parameters match those for the quantum phase transition. Counter-intuitively, the growth of bipartite entanglement for long-range interactions is only logarithmic for most regimes, i.e., substantially slower than for shorter range interactions. Experiments with trapped ions allow for the realization of this system with a tunable interaction range, and we show that the different phenomena are robust for finite system sizes and in the presence of noise. These results can act as a direct guide for the generation of large-scale entanglement in such experiments, towards a regime where the entanglement growth can render existing classical simulations inefficient.Comment: 17 pages, 7 figure

    Shor's quantum factoring algorithm on a photonic chip

    Full text link
    Shor's quantum factoring algorithm finds the prime factors of a large number exponentially faster than any other known method a task that lies at the heart of modern information security, particularly on the internet. This algorithm requires a quantum computer a device which harnesses the `massive parallelism' afforded by quantum superposition and entanglement of quantum bits (or qubits). We report the demonstration of a compiled version of Shor's algorithm on an integrated waveguide silica-on-silicon chip that guides four single-photon qubits through the computation to factor 15.Comment: 2 pages, 1 figur

    Manipulating biphotonic qutrits

    Get PDF
    Quantum information carriers with higher dimension than the canonical qubit offer significant advantages. However, manipulating such systems is extremely difficult. We show how measurement induced non-linearities can be employed to dramatically extend the range of possible transforms on biphotonic qutrits; the three level quantum systems formed by the polarisation of two photons in the same spatio-temporal mode. We fully characterise the biphoton-photon entanglement that underpins our technique, thereby realising the first instance of qubit-qutrit entanglement. We discuss an extension of our technique to generate qutrit-qutrit entanglement and to manipulate any bosonic encoding of quantum information.Comment: 4 pages, 4 figure

    Quantum simulation of the Klein paradox with trapped ions

    Get PDF
    We report on quantum simulations of relativistic scattering dynamics using trapped ions. The simulated state of a scattering particle is encoded in both the electronic and vibrational state of an ion, representing the discrete and continuous components of relativistic wave functions. Multiple laser fields and an auxiliary ion simulate the dynamics generated by the Dirac equation in the presence of a scattering potential. Measurement and reconstruction of the particle wave packet enables a frame-by-frame visualization of the scattering processes. By precisely engineering a range of external potentials we are able to simulate text book relativistic scattering experiments and study Klein tunneling in an analogue quantum simulator. We describe extensions to solve problems that are beyond current classical computing capabilities.Comment: 3 figures, accepted for publication in PR

    Guide to the identification of seagrasses in the Great Barrier Reef Region

    Get PDF
    Seagrasses occur in many areas along the coast of northern Australia and are significant components of the flora of the Great Barrier Reef region. Recent field studies aimed at mapping seagrass beds in northern Australia have revealed that seagrasses occur along the length of the Great Barrier Reef lagoon to Torres Strait. In recent surveys conducted by the Commonwealth Scientific and Industrial Research Organisation (CSlRO), Division of Fisheries, seagrasses have been found in reef, inter-reef and offshore island situations throughout Torres Strait. Although reefs within the Great Barrier Reef Marine Park have not been comprehensively surveyed for seagrasses, preliminary studies indicate that they may also commonly occur on many of these reefs, in habitats extending from intertidal to completely subtidal situations

    Experimental quantum computing without entanglement

    Get PDF
    Entanglement is widely believed to lie at the heart of the advantages offered by a quantum computer. This belief is supported by the discovery that a noiseless (pure) state quantum computer must generate a large amount of entanglement in order to offer any speed up over a classical computer. However, deterministic quantum computation with one pure qubit (DQC1), which employs noisy (mixed) states, is an efficient model that generates at most a marginal amount of entanglement. Although this model cannot implement any arbitrary algorithm it can efficiently solve a range of problems of significant importance to the scientific community. Here we experimentally implement a first-order case of a key DQC1 algorithm and explicitly characterise the non-classical correlations generated. Our results show that while there is no entanglement the algorithm does give rise to other non-classical correlations, which we quantify using the quantum discord - a stronger measure of non-classical correlations that includes entanglement as a subset. Our results suggest that discord could replace entanglement as a necessary resource for a quantum computational speed-up. Furthermore, DQC1 is far less resource intensive than universal quantum computing and our implementation in a scalable architecture highlights the model as a practical short-term goal.Comment: 5 pages, 4 figure
    • …
    corecore