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Studying entanglement growth in quantum dynamics provides both insight into the underlying micro-

scopic processes and information about the complexity of the quantum states, which is related to the

efficiency of simulations on classical computers. Recently, experiments with trapped ions, polar mole-

cules, and Rydberg excitations have provided new opportunities to observe dynamics with long-range

interactions. We explore nonequilibrium coherent dynamics after a quantum quench in such systems,

identifying qualitatively different behavior as the exponent of algebraically decaying spin-spin inter-

actions in a transverse Ising chain is varied. Computing the buildup of bipartite entanglement as well as

mutual information between distant spins, we identify linear growth of entanglement entropy corres-

ponding to propagation of quasiparticles for shorter-range interactions, with the maximum rate of

growth occurring when the Hamiltonian parameters match those for the quantum phase transition.

Counterintuitively, the growth of bipartite entanglement for long-range interactions is only logarithmic

for most regimes, i.e., substantially slower than for shorter-range interactions. Experiments with trapped

ions allow for the realization of this system with a tunable interaction range, and we show that the different

phenomena are robust for finite system sizes and in the presence of noise. These results can act as a direct

guide for the generation of large-scale entanglement in such experiments, towards a regime where the

entanglement growth can render existing classical simulations inefficient.

DOI: 10.1103/PhysRevX.3.031015 Subject Areas: Atomic and Molecular Physics, Quantum Physics

I. INTRODUCTION

Advances with atomic molecular and optical (AMO)

systems, including cold atoms, entangled photons, and

trapped ions, have rapidly opened possibilities to explore

many-body physics in a highly controllable way [1–3]. A

key example of this is the new possibility to explore

coherent nonequilibrium dynamics in a closed many-

body system, e.g., the dynamics induced by quantum

quenches [4–9,9–13]. There have been several recent

quench experiments with cold atoms in optical lattices,

which not only probe the microscopic behavior of the

system, e.g., the propagation of quasiparticles [14], but

also indicate the possibility to probe dynamics beyond

the regimes that are currently accessible to classical simu-

lations [15–17]. In this context, the growth of entanglement

in the system underlies the complexity of simulating the

dynamics classically. Demonstration of large entanglement

growth after a quantum quench would be a crucial step in

demonstrating the possibility to use these systems as con-

trollable quantum simulators, effectively using experimen-

tal systems to compute dynamics in a way that exceeds the

capabilities of classical computations [18].

Systems of trapped ions are a very promising candidate

for realizing a quantum simulator because of the control

already demonstrated in the development of gate-based

quantum computation and simulation [19–21] with these

systems, and the ability to make measurements by state

tomography [22]. Recently, analogue quantum simulation

of interacting spin systems [23,24] was also realized in ion

traps [25–27], with a key novel element being the possi-

bility to realize variable-range interactions [28–33], as

shown in Fig. 1, in contrast to the short-range interactions

of neutral atoms, or the dipole-dipole interactions possible

with polar molecules.

So far, these variable-range interactions were discussed

primarily in the case of ground-state calculations and near-

adiabatic dynamics. Here, we explore nonequilibrium co-

herent dynamics after a quantum quench in these systems,

identifying qualitatively different behavior as the exponent

� of algebraically decaying spin-spin interactions is var-

ied. Beginning with all spins aligned with a transverse

field, we use a combination of analytical and numerical

methods to compute the dynamics after the Ising interac-

tions are quenched on, incorporating matrix product op-

erator techniques [34–41] to treat variable long-range

interactions with up to 50 spins.

In particular, we investigate the buildup of bipartite

entanglement in the chain as well as mutual information

between distant spins [6–9]. For interactions with � * 1,
we show that the behavior is qualitatively similar to

nearest-neighbor interactions, with correlation buildup
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well described by the propagation of quasiparticles at a rate

equal to or slower than the Lieb-Robinson bound [42–44].

This leads to a linear increase in bipartite entanglement in

time, so that the dynamics cannot be efficiently computed

in existing classical simulations beyond short times

[16,17]. Interestingly, in this limit, we find that the maxi-

mum growth rate of bipartite entanglement, even in small

systems, occurs when we quench the interaction strength to

the value corresponding to the quantum-phase-transition

point, shifting accordingly for varying �.
For interactions with � & 1, we observe qualitatively

different behavior. Counterintuitively, quenches above the

critical point for these long-range interactions lead only to

a logarithmic increase of bipartite entanglement in time, so

that in this regime, long-range interactions produce a

slower growth of entanglement than short-range interac-

tions. This can be understood by the fact that the dynamics

is constrained to take place in a small part of the total

available Hilbert space. In particular, in the case of infinite-

range interactions, the system is described by the Lipkin-

Meshkov-Glick (LMG) Hamiltonian [45,46], where the

eigenspace of the model is spanned by relatively few

Dicke states. We show that, in this case, the bipartite

entanglement is bounded by a constant value, which grows

logarithmically with the size of the system. For a large

system size, this can be thought of as a mean-field limit,

where the dynamics is simple to capture with a small

number of basis states.

Finally, we discuss specific experimental parameters for

the realization of different regimes in ion traps with finite

chain lengths, and experimental measurement protocols for

these effects, creating possibilities for the regimes consid-

ered here to be observed in the laboratory. We show that the

crossover from linear to logarithmic entanglement growth

can be observed also for inhomogeneously decaying inter-

actions. Furthermore, we take typical experimental noise

sources into account and show that the observable features

are robust against these. The result that long-range inter-

actions do not always give rise to strong entanglement in

quench dynamics has implications for the realization of

large-scale entanglement in quantum simulations in gen-

eral systems with long-range interactions.

This paper is organized as follows. In Sec. II, we in-

troduce the setup and the model, as well as the entangle-

ment measures we compute. In Sec. III, we show how the

entanglement growth depends on the model parameters

and how the entanglement distribution mechanisms can

be understood. In Sec. IV, we show entanglement growth

for typical experimental parameters with inhomogeneously

decaying interactions and how the entanglement behavior

can be measured in noisy experiments. Finally, in Sec. V,

we provide a conclusion and an outlook.

II. MODEL FOR A QUENCH WITH LONG-RANGE

INTERACTIONS

In this paper, we study the nonequilibrium dynamics of

spatial entanglement in systems with long-range interac-

tions, especially as they are realizable with variable range

in ion traps. In this section, we introduce the long-range

transverse Ising model governing the time evolution, and

the measures of entanglement we compute.

A. Transverse Ising model

We consider the transverse Ising model with long-range

interactions, described by the Hamiltonian

Ĥ ¼
X

i<j

Ji;j�̂
x
i �̂

x
j þ B

X

i

�̂z
i : (1)

Here, the �̂�
i denote the local Pauli matrices (� ¼ x, z), Ji;j

is a general interaction matrix with potentially long-range

interactions, and B is the transverse field. This Hamiltonian

can be realized experimentally, e.g., with a string of

trapped ions that are harmonically confined in a linear

trap, as depicted in Fig. 1. Using two stable (or metastable)

electronic states of these ions as local spin representations

at site i, j "ii and j #ii, it has been shown [23] that one can

use collective couplings of these local states to motional

degrees of freedom of the whole chain to produce the

effective spin model (1) [an example of Ji;j for the ion-

trap experiment, ‘‘case B’’ of Sec. IV, is shown in

Figs. 1(b) and 1(c)]. Note that, throughout this paper, we

will deal with open boundary conditions, which are typical

in ion-chain experiments.

We define the local eigenstates of �̂z
i as j0ii � j #ii and

j1ii � j "ii, with eigenvalues �1 and 1, respectively. We

consider a quench experiment [see Fig. 1(a)], where the

system starts in the fully polarized state jc 0i ¼
Q

M
i j0ii,

(b)

FIG. 1. (a) Illustration of the quench experiment. We consider

a linear chain of ions (effective spin model) with long-range

interactions. Initially, all spins are fully polarized along the axis

of the magnetic field B. After a time evolution, spatial entangle-

ment entropy (SvN) builds up between blocks of the system.

(b) A typical calculated experimental interaction matrix for 20

ions (see text for further details and parameters). (c) The decay

of the interactions with a tunable decay exponent �. Here, the
grey dots show the mean interactions from diagram (b).
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which is the ground state for Bðt ¼ 0Þ ! 1. We are inter-

ested in the nonequilibrium dynamics of the many-body

quantum state under a coherent evolution, i.e., (@ ¼ 1):

jc ti ¼ e�iĤtjc 0i ¼
X

i1;i2;...iM

ci1;i2;...;iM ðtÞ
Y

k

jikik; (2)

with ik 2 f0; 1g.
We will concentrate on the case Ji;j > 0 for all i, j.

However, we note that, nevertheless, we obtain solutions

for both the ferromagnetic and the antiferromagnetic case.

Since we start in a state with a real probability amplitude in

the spin basis, the evolution for any observable Ôz (with

Ôy
z ¼ Ôz), such as a density matrix of any subsystem, is

completely symmetric under the time-reversal transforma-

tion t $ �t. This can be seen by the fact that

hc tjÔzjc ti ¼ hc 0j cosðĤtÞÔz cosðĤtÞjc 0i
þ hc 0j sinðĤtÞÔz sinðĤtÞjc 0i

¼ hc�tjÔzjc�ti; (3)

where the cross terms have to vanish because of the real

coefficients of the initial state and the fact that the expec-

tation value must be real. Thus, the evolution of any

observable is identical under both Hamiltonians Ĥ and

�Ĥ. Therefore, the results we obtain for B> 0 with the

antiferromagnetic (Ji;j > 0) model are identical to the fer-

romagnetic model (Ji;j < 0) with either a negative field�B

or a rotated initial state.

In this paper, wewill show how the entanglement growth

behavior changes with the strength of the magnetic field

and the range of the interactions. Initially, we will idealize

the interaction matrix, taking the form

Ji;j ¼
�J

ji� jj� ; (4)

where �J denotes the nearest-neighbor interaction strength

and � is the decay exponent. This gives a good represen-

tation of the basic behavior of the interactions, but in real

experiments, there are typically small deviations from the

purely algebraic behavior of the interactions. In Sec. IV, we

will consider a full interaction matrix Ji;j for real experi-

mental parameters, as well as the effects of noise in the

experiment.

B. Spatial entanglement

In characterizing the growth of spatial entanglement in

the spin chain, we will make use of two complementary

measures: The von Neumann entropy for a bipartite split-

ting of the chain in the center of the system, and the

quantum mutual information between two distant spins.

The former gives a measure of the overall entanglement

buildup, and it also gives an idea of the complexity of

the state being generated. The latter measure will give

more detailed information as to how correlations propagate

spatially, and it will also help us to characterize what part

of the entanglement buildup is due to propagation of

quasiparticles produced in the quench and which part is

due to direct interactions through long-range interactions.

Both of these measures are accessible in experiments,

though the mutual information is substantially less costly

to measure (see Sec. IVB for more information).

1. Half-chain von Neumann entropy

Consider a chain ofM spins as depicted in Fig. 1(a). We

can split this system into two halves, L and R, in the center
of the system. In the case that the (pure) state of the

composite system jc i cannot be written as a product state

of two states on the subsystems L and R, i.e., jc i �
jc Aijc Bi, we call the state entangled. The reduced density
matrix of the subsystem L is defined via �L � trRðjc ihc jÞ,
where trR denotes the partial trace over the system R. This
density matrix will only be pure for a product state, and in

the case of an entangled state, the amount of bipartite

entanglement is quantified by the von Neumann half-chain

entropy of this matrix, which is defined as

SvN � Sð�LÞ � �trð�Llog2�LÞ: (5)

The time-dependent growth of the half-chain entropy

summarizes the buildup of quantum correlations between

two halves of the system. In a sense, it also underlies the

complexity of numerical simulations of the quench when

using matrix product state (MPS) representations. As we

show in Appendix A, the size of the MPS, represented by

the bond dimension D, has to grow exponentially as a

function of time in the case where SvN grows linearly.

Regimes of linear entanglement growth in time are thus

important in demonstrating the power of a quantum simu-

lator since realizing such regimes is a necessary require-

ment in order to observe dynamics that cannot be captured

by state-of-the-art numerical techniques over long time

scales [15,16].

2. Quantum mutual information

An alternative measure, which gives more information

on the distance of correlations, is the quantum mutual

information between two distant spins i and j. In an

experiment, this is also more straightforward to measure

than the von Neumann entropy for a bipartite splitting into

two large blocks (see Sec. IVB), and it clearly allows one

to distinguish different regimes of entanglement growth.

The quantum mutual information is defined as

Ii;j ¼ SvNð�iÞ þ SvNð�jÞ � SvNð�ijÞ: (6)

Here, �i ¼ trk�iðjc ihc jÞ and �j ¼ trk�jðjc ihc jÞ denote
the reduced density matrices of the single spins (obtained

by tracing over all other spins k), and �ij ¼ trk�i;jðjc ihc jÞ
is the reduced density matrix of the composite system of

the two spins.
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Note that one has to be careful when interpreting the

half-chain entropy and the quantum mutual information in

an experiment in which the quantum state of the whole

chain is, in general, mixed because of coupling to the

environment and classical noise. In general, the

von Neumann entropy for each reduced density matrix is

expected to increase compared to the zero-temperature

case [47]. We will consider these imperfections in Sec. IV.

III. ENTANGLEMENT GROWTH DYNAMICS

In this section, we study the evolution of the entangle-

ment after the quench. We identify three very different

regimes: (i) For relatively short-range interactions � * 1
(depending on the system size), we find a linear growth of

the half-chain entropy as a function of time, which we can

understand in terms of free quasiparticle propagation

within an effective Lieb-Robinson light-cone. (ii) For

long-range interactions �� 0:8, 0.9, 1, we find a regime

where the half-chain entropy grows logarithmically.

(iii) For nearly infinite-range interactions with � & 0:2,
we find rapid oscillations of the half-chain entropy around

small values, which we can understand in an effective

Dicke-state model [48]. We treat case (i) in Sec. III A,

case (ii) in Sec. III B 1, and case (iii) in Sec. III B 2. In

Sec. III C, we show how the entanglement growth in re-

gime (i) depends on the transversal field B, and we discover
a connection between the entanglement growth rate and the

underlying ground-state phase diagram of the model.

A. Entanglement dynamics for relatively short-range

interactions (� � 1)

1. Nearest-neighbor interactions

To understand the entanglement entropy growth behav-

ior in this regime, it is instructive to first revise the case of

nearest-neighbor interactions, i.e., an interaction matrix (4)

with a decay exponent � ! 1, and discuss the dynamics

of the quantities we study here. In this limit, the model

Hamiltonian (1) becomes a standard transverse Ising

model of the form

H ¼ J
X

i

�x
i�

x
iþ1 þ B

X

i

�z
i ; (7)

which has been well studied in the literature. Note that

since the spectrum of the Hamiltonian is symmetric under

the exchange B $ �B, the dynamics will not only be

identical under a change of the sign of the total

Hamiltonian, but also under a change of the sign of B,
and we therefore focus on B> 0 here. The model (7) can

be diagonalized analytically [49] (see Appendix B for

more details). After performing a Jordan-Wigner transfor-

mation and diagonalizing the quadratic Hamiltonian in

quasimomentum space, the resulting diagonal model is a

model of free fermions �q,

H ¼
X

q

�q

�

�y
q�q �

1

2

�

: (8)

The �q (�y
q ) are the annihilation (creation) operators

for a fermionic quasiparticle with quasimomentum q,

which obey the anticommutation relations f�q; �
y
pg ¼

�q;p. In the thermodynamic limit, i.e., for a chain of

infinite length, the quasimomenta become continuous

��< qa < � (a is the spatial separation between the

spins), and the dispersion relation of the free particles is

twofold degenerate for q ¼ �q � 0 and given by �q ¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðJ � BÞ2 þ 4JBsin2ðqa=2Þ
p

. The group velocity of qua-

siparticle excitations in this system is given by vgðqÞ=a ¼
d�q=dðqaÞ. The maximum velocity of the quasiparticles

gives rise to the Lieb-Robinson bound, which defines an

effective light cone for spatial correlations, outside of

which the correlations are exponentially suppressed [42].

This sets an upper linear bound on the block entropy

growth, as we will see below. It is straightforward

to calculate that the fastest particles move at a

Lieb-Robinson velocity vR ¼ maxjvgj ¼ 2aJ for B � J

and vR ¼ 2aB for B< J.
Following [43], we can understand the entanglement

distribution mechanism in model (8) as follows: In a

coherent time evolution, the initially excited state acts as

a source for quasiparticle excitations. Pairs of the free

fermions with quasimomenta p and �p, which have

been created at a certain point in space, are entangled pairs.

These pairs move freely through the system with corre-

sponding group velocities vg and �vg, respectively. Parts

of pairs that have been produced in block L and arrive in

block R entangle the two blocks. An illustration of this

mechanism is given in Fig. 2(a). Thus, the arrival rate in

block R for quasiparticles belonging to a pair created in

block L is constant. Therefore, the increase of half-chain

entropy is linear, and we expect SvN ¼ �vgt, with some

constant �. Since the group velocity is limited by the

Lieb-Robinson bound, SvN � �vRt.
We can test this mechanism explicitly by making use of

the boundary effects with open boundary conditions.

Consider a quasiparticle pair, which has been created at

the left edge of block L and moves at the Lieb-Robinson

velocity. As soon as the right-moving quasiparticle arrives

in block R, the linear entanglement increase has to break

down since there are no more entangled pairs available to

the left that could further entangle blocks L and R. We can

estimate the time at which this happens as t� ¼ ðM=2Þ=vR,

which corresponds to t� ¼ ðM=4JÞ for B � J and to t� ¼
ðM=4BÞ for B< J. In Fig. 2(b), we plot a comparison of

this critical time with a numerical exact diagonalization

simulation (ED; see Appendix A for details) of the half-

chain entropy evolution for B ¼ J for increasingly large

system sizes of 10 � M � 20 spins. We see that, as ex-

pected exactly at the critical time, for each system size, the
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entropy starts to level off and remarkably reduces again

after this maximum peak.

The quench experiment for B ¼ J is special in the sense

that this is a quench to the critical point of the quantum

phase transition of Hamiltonian (7). We will now ask how

the entanglement growth depends on B. In the limit of

B ! 1, the initial state becomes an eigenstate of the

system and no evolution will take place, i.e., SvNðtÞ ¼ 0.
On the other hand, in the limit of B ! 0, the Hamiltonian

has a spectrum with M degenerate levels, which are

separated by an energy of �2J (spin flips). Thus, in the

latter case, we expect dynamics which is dominated by

oscillations between those levels at a frequency scale given

by J. Indeed, for B ¼ 0 it is straightforward to calcu-

late analytically that SvNðtÞ ¼ �cos2ðJtÞlog2½cos2ðJtÞ��
sin2ðJtÞlog2½sin2ðJtÞ�. In Fig. 2(c), we find the expected

behavior for B< J in an exact diagonalization simulation

of a system with 20 spins. For increasing B, the oscillatory
behavior of SvN (which fits the analytical result) breaks

down and changes into a linear increase before boundary

effects become important. Since the Lieb-Robinson veloc-

ity decreases with B for B< J, correspondingly the bound-
ary effects shift to later times for smallerB [critical times t�

are indicated as vertical arrows in Fig. 2(c)]. It is interest-

ing to note that in this case the maximum value of SvN can

actually be larger than for B ¼ J. In Fig. 2(d), we analyze

the opposite case of B> J. Remarkably, we find that, also

away from the critical point, the half-chain entropy growth

becomes slower with increasing B. Below, we will find that
this also holds for finite-range interactions with � * 2 and
that the fastest entanglement growth precisely follows the

point of the phase transition.

2. Finite-range interactions (� * 1)

We now investigate the situation of relatively short-

ranged interactions,which extend beyond nearest neighbors

and decay algebraically with � * 1. In Fig. 3, we demon-

strate that the picture of entanglement distribution via

entangled quasiparticle pair propagation also holds for a

large range of finite � * 1 (depending on the system size).

We find that, despite the existence of direct spin-spin inter-

actions over all distances, it is the propagation of quasipar-

ticles that dominates the dynamics of entanglement growth

over this range of � values.

One marked signature of the linear half-chain entropy

growth is that, before boundary effects become important,

the rate of the growth is essentially independent of the size

of the system, as shown in Fig. 3(a). In this figure, we show

the time evolution of SvN after the quench for various decay

exponents in the range1 � � � 1:5. The solid lines show
an ED simulation for a system of 20 spins, and the dashed

lines are for M ¼ 50 spins. We obtain the results for

large systems using time-dependent density matrix renor-

malization group (t-DMRG) methods. Specifically, we

use a matrix product operator (MPO) [34–36] of the

Hamiltonian to time evolve a MPS via a Runge-Kutta–

type method [50] (see Appendix A for more details). In all

cases with �> 2, we find that the two lines coincide and

that the increase is linear. For � ¼ 1:5, we find a slight

change in the behavior in the sense that the results forM ¼
20 andM ¼ 50 start to differ. When we further increase the

range of interactions, we find that this linear growth

changes to a logarithmic one, as we demonstrate in

Fig. 3(b) using a t-DMRG calculation with � ¼ 0:8, 0.9,
1 and forM ¼ 30, 40, 50. We treat this case in more detail

in Sec. III B 1.

In Fig. 3(c), we show an overview over the regime of

linear half-chain entropy growth and its finite-size scaling.

Therefore, as a function of system size and �, we plot

the error of a linear fit, �fit, which is defined as a

95%-confidence interval on the slope coefficient and it is

cut off at 6%. In large systems, we find that the linear

FIG. 2. Entanglement growth after a quantum quench in the transverse Ising model in which nearest-neighbor interactions are

introduced suddenly. (a) Illustration of entanglement distribution, via entangled quasiparticle pair excitations that move within a Lieb-

Robinson light cone. Boundary effects for this system with open boundary conditions stop the linear increase at a critical time t�. (b–d)
Time evolution of half-chain entropies forM ¼ 10, 12, 14, 16, 18, and 20 spins (ED calculation). (b) Boundary effects as a breakdown

of the linear growth. Respective critical times calculated for the free fermion model are shown as vertical lines. (c) The crossover from

the oscillatory behavior for B ¼ 0 (dots: analytical result) to a linear increase (M ¼ 20). With decreasing B, boundary effects shift to

later times; critical times are indicated as vertical arrows. (d) The half-chain entropy growth, which is fastest for B ¼ 1 and decreases

again for B> 1 (M ¼ 20).
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increase (small error) breaks down at �� 1. For smaller

systems, boundary effects and finite-size effects become

significant, and the linear regime breaks down at larger �.
Note that the change in behavior for large systems at �� 1
can, in a sense, be understood since this marks the point at

which, in the thermodynamic limit, the sum in the interac-

tion term in the Hamiltonian begins to diverge with in-

creasing system size.

We can also identify the regime of linear growth of SvN
by looking at the mutual information between distant spins.

In the upper panel of Fig. 3(d), we plot the time evolution

of the mutual information I1;8, between sites 1 and 8, for

1 � � � 2 in a system of 20 spins and for B ¼ �J. As a

clear signature of the regime of linear growth of the half-

chain entropy, we find that the mutual information remains

nearly zero for a certain time until it suddenly peaks at a

time corresponding to the arrival of an ‘‘entangling’’ qua-

siparticle pair originally produced on a site between the

two spins. For nearest-neighbor interactions, this arrival

time is consistent with the analytically calculated

Lieb-Robinson velocity (cf. Appendix B), and we find

that the same mechanism still holds for rather long-ranged

interactions of �� 2. In contrast, for the regime of loga-

rithmic growth of SvN, we find a markedly different be-

havior [lower panel of Fig. 3(d)], which is discussed in the

next section.

We emphasize that the fact that the entanglement growth

mechanism is directly reflected in the time dependence of

the mutual information between two distant spins is very

important for experimental observations. Instead of having

to reconstruct 2ðM=2Þ � 2ðM=2Þ density-matrix elements of a

large block via quantum-state tomography, the growth

behavior of the half-chain entropy can be directly verified

by measuring only 4� 4 density matrices for a system of

two composite spins. In Sec. IVB, we will show how the

measurement further simplifies for the particular quench

we consider here.

B. Entanglement dynamics for long-range interactions

In this section, we study the entanglement growth for

very long-range interactions with � � 1. In this regime,

the picture of entangling quasiparticles that move freely

within a light cone breaks down, and instead distant parts

of the system can become almost instantaneously en-

tangled based on direct interactions. We observe that for

�� 0:8, 0.9, 1, the half-chain entropy can still increase

steadily as a function of time for our quench, but that the

increase becomes logarithmic instead of linear. When fur-

ther increasing the range of interactions for � & 0:2, we
find a regime where SvN oscillates rapidly around small

values. We understand this behavior via an effective model

in a basis of Dicke states [48] for infinite-range interactions

� ¼ 0.

1. Logarithmic entropy growth

When increasing the range of interactions, eventually

the linear growth of SvN breaks down, and the growth

becomes logarithmic, as shown in Fig. 3(b). For very

long-range interactions, the time scale of the dynamics is

dominated by the interaction-energy term in the

Hamiltonian. Thus, to make a valid comparison, it is

favorable to measure the time in inverse units of the matrix

norm instead of �J. For Hamiltonian (1), we can calculate

(a) (b) (c)

FIG. 3. Entanglement growth after a quantum quench in the transverse Ising model in which algebraically decaying interactions are

introduced suddenly. (a) Time evolution of the half-chain entropy after the quench for B ¼ 1 and varying decay exponents � ¼ 1:5, 2,
2.5, 3, and 1 (from bottom to top). Solid lines are ED results for M ¼ 20 spins; dashed lines are MPS/MPO results for 50 spins

(converged with MPS bond dimension D ¼ 192). For � � 2, the growth is clearly linear and independent of the system size. (b) Time

evolution of 2SvN . Each of the three bundles of lines contains the results for M ¼ 30, 40, and 50 spins and � ¼ 0:8, 0.9, and 1 (MPS/

MPO simulation, converged with D ¼ 192). On top of the oscillations, the growth is logarithmic (straight line on the exponential

scale). Time is given in units of the inverse Hamiltonian norm, �	 (cf. Sec. III B 1). (c) Finite-size scaling of the crossover from linear

SvN growth to a logarithmic one visualized by the error of a linear fit, �fit, in the interval 1< t �J < 3 as a function of � and M (B ¼ 1,
ED and MPS/MPO simulations, D ¼ 192). For large systems, the crossover occurs around �� 1. (d) Time evolution of the mutual

information between spins 1 and 8, I1;8 (M ¼ 20, B ¼ �J, ED). The upper panel shows results for 2 � � � 1, the lower panel for

1 � � � 0:2. The signature of linear growth of the half-chain entropy is the arrival of a quasiparticle peak after a certain time, whereas

for � & 1, distant spins become entangled instantaneously.
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the Frobenius norm as k H k¼ 2M=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðPM
j>i J

2
i;j þMB2Þ

q

.

The 2M=2 prefactor is due to the exponential growth of the

Hilbert space with M, and we define the time unit per spin

realistically as �	�1 ¼k H k 2�M=2. In Fig. 3(b), we plot

the evolution of the von Neumann entropy in these units for

system sizes ofM ¼ 30, 40, 50, for � ¼ 0:8, 0.9, 1 and for
B ¼ 0:7 �J, 1 �J, 1:3 �J. If, ideally, the entropy increases log-

arithmically without oscillation, SvN ¼ log2ðCtþ 1Þ, with
some constant C. On an exponential scale, i.e., by plotting

2SvNðtÞ, we would see a straight line. In Fig. 3(b), we indeed
find oscillations around a straight line. It is remarkable that,

for a fixed value of B, independently of the system size and

for all � ¼ 0:8, 0.9, 1, we find roughly the same constant C
in units of �	�1. With decreasing B, i.e., for quenches that
put an increasing amount of energy into the system, the

constant increases. For interactions with � & 0:7, the os-

cillations become more dominant so that the logarithmic

increase is hard to verify.

Also, the time evolution of the mutual information be-

tween distant spins shows a completely different qualitative

behavior for � & 1 than for � * 1. In Fig. 3(d), we show

the evolution of I1;8 after the quench for a system of 20 spins

(B ¼ �J) for 2 � � � 0:2. In the upper panel of Fig. 3(d), we
find that the incoming-wave picture breaks down when �
decreases from� ¼ 2 to� ¼ 1. In the latter case, we find a
mixed behavior, where a wave peak is still roughly visible

around t �J � 3; however, peaks also appear for very short

times. These peaks indicate that, because of the long-range

part of the interaction, distant parts of the system become

rapidly entangled with an immediate increase in correla-

tions after the quench. When further increasing the interac-

tion range [lower panel of Fig. 3(d)], these contributions to

I1;8 become dominant and the quasiparticle peak disappears

completely. While for �� 1, I1;8 still shows some slow

overall increase as a function of time, in the case of nearly

infinite-range interactions (� & 0:2), we only find rapid

oscillations around a constant value of I1;8 � 0:1. In an

experiment, the decrease in the height of the short-time

peak of themutual information could be used as an indicator

for the crossover from the logarithmic half-chain entropy

growth regime to the linear one. Furthermore, we find that

this height, in contrast to the frequency of the oscillations, is

independent of the system size.

2. Entanglement dynamics for infinite-range interactions

To understand the rapid oscillations and small half-chain

entropy for decay exponents of � & 0:2, it is instructive to
consider the case of infinite-range interactions, i.e., � ¼ 0.
In this limit, each spin interacts with equal strength with all

others and the (‘‘mean-field’’) Hamiltonian reads

Ĥ ¼ J
X

M

i<j

�̂x
i �̂

x
j þ B

X

M

i

�̂z
i : (9)

As in the nearest-neighbor case, this limit is analytically

exactly solvable. We can introduce effective spin-M=2
operators Sx;y;z �

P

M
i �̂

x;y;z
i . With these, we can rewrite

Hamiltonian (9) as

Ĥ ¼ J

2
S2x þ BSz �

J

2
M: (10)

In the literature, this model is well known as the LMG

model, and its entanglement properties have been studied,

e.g., in [45,46]. A basis for Hamiltonian (10) is given by

Dicke spin-M=2 states, which are defined as
�

�

�

�

�

�

�

�

S ¼ M

2
; mS ¼ n1 �

M

2

�

� Sjfn0; n1gi: (11)

Here, n0, n1 denote the number of spins (down and up,

respectively), and S is the symmetrization operator.

For example, for a system of four spins, we would

have an effective spin-2 model, and one particular Dicke

state would be jS ¼ 2; mS ¼ �1i ¼ ðj0001i þ j0010i þ
j0100i þ j1000iÞ=2. In this picture, the quench experiment

is equivalent to a free evolution under Hamiltonian (10)

with the initial state jc 0i ¼ jS ¼ M=2; mS ¼ �M=2i.
It is straightforward to calculate the half-chain

von Neumann entropy for an arbitrary Dicke state [51]

(see Appendix B for more details). One finds that

SvN ¼ �
X

l

pllog2ðplÞ; (12)

plðn1Þ ¼
M=2
l

� �

M=2
n1 � l

� �

M
n1

� � ; (13)

where pl are combinatorial factors depending only on the

number of single up spins of the corresponding Dicke state

and 0 � l � M=2. Example results are plotted in Fig. 4(a),

and it is important to note that, simply because the sum in

(12) contains a maximum ofM=2þ 1 terms, the entropy is

bounded by SvN � log2ðM=2þ 1Þ.

(b)(a)

FIG. 4. (a) The half-chain entropy for single Dicke states as a

function of the number of spins up and for system sizes M ¼
10; . . . ; 100. (b) The time evolution of the half-chain entropy in

our specific quench experiment for a chain of 50 spins. As shown

in the text, the entropy is bounded by a constant SvN �
log2ðM=4þ 1Þ.
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In our quench, the time-dependent state will assume a

superposition of Dicke states, jc ðtÞi ¼ P

mcmðtÞjM=2; mi,
with cmðt ¼ 0Þ ¼ �m;�M=2. In the small Dicke Hilbert

space, the time evolution can be easily numerically simu-

lated, and we can, at any instance in time, construct the

reduced density matrix for one half of the system. From this

density matrix, the von Neumann entropy can be readily

calculated, and examples are shown in Fig. 4(b). Again, we

find, simply by noting that the dimension of theM=4Dicke
subspace is M=2þ 1, that for an arbitrary Dicke-state

superposition, the von Neumann entropy is limited by

SvN � log2ðM=2þ 1Þ. However, for our specific experi-

ment, a tighter bound can be found. Since the Hamiltonian

(10) only couples spin states with mS ¼ 	2, the time-

dependent coefficients cmðtÞ can only be nonzero for

states with m ¼ �M=2;�M=2þ 2; . . . ;M=2. Assuming

an even number of spins, the entropy is then limited by

SvN � log2ðM=4þ 1Þ, which is in agreement with the ex-

act von Neumann entropy evolution, as shown in Fig. 4(b).

C. Ground-state phase-transition point and

entanglement growth

In this section, we study how the linear growth of SvN for
� � 2 depends on the value of B and the decay exponent
�. We focus on the case �J ¼ 1, B> 0. For ground states, as
for the nearest-neighbor transverse Ising model, the long-
range model undergoes a quantum phase transition from an
antiferromagnetic to a paramagnetic phase at a critical field
Bc for all decay exponents� [52,53]. For example, for� ¼
3 it has been calculated that Bc 
 0:83 [54]. As shown in
Ref. [54], we can estimate the point of the phase transition
by locating the discontinuity of the transverse magnetiza-
tion, i.e., the jump in d2mz=dB

2, where mz ¼
P

mh�z
mi. In

order to do this for moderately large systems, we use a

MPO Lanczos diagonalization for 100 spins. In Fig. 5, we

compare this ground-state phase-transition point for a

moderate system size to the linear growth rates of the

von Neumann entropy in a small systems of only 20 spins

as a function of � and B. It is remarkable that the point of

the ground-state phase transition is not only reflected in the

scaling behavior of the block entropy in the ground state

[53], but we also find that in the evolution following the

quench from Bðt ¼ 0Þ ¼ 1 ! B, the growth rate of

the von Neumann entropy as a function of time is largest

at the critical points Bc. Since the entangling quasiparticles

are bounded by the Lieb-Robinson bound, this effect is

independent of the system size up to times t� when bound-
ary effects limit the quasiparticle propagation.

IV. ENTANGLEMENT GROWTH AND

MEASUREMENT USING TRAPPED IONS

A. Entanglement growth for realistic

experimental parameters

In this section, we ask towhat extent the effects shown in

the previous sections are experimentally observable in ion

traps. Therefore, we consider two experimentally realistic

full interaction matrices Ji;j, which show the characteristic

behavior of linear entanglement growth and logarithmic

growth. In case A, over short distances, the averaged

interactions decay as �< 1 (logarithmic growth regime),

and in case B, they decay as �� 2 (linear growth regime),

as depicted in Fig. 6(a). We define the energy unit by the

largest element of Ji;j, which we denote �J in this section.

We consider a linear chain of 20 ions that interact via the

mechanism described in [31,32]. In summary, a force is

applied that couples the electronic ‘‘spin’’ state of the ions

to the spectrum of closely spaced (nearly frequency degen-

erate) vibrational modes transverse to the ion string. By

setting the driving force to be far off resonance, the phonon

states can be adiabatically eliminated, allowing an ana-

logue simulation. While the simulations presented are for
40Caþ ions driven with bichromatic laser fields, similar

interaction matrices can be derived in a number of other

systems. The exact experimental parameters considered

are given in Appendix C.

We show the evolution of the half-chain entropy and the

mutual information I1;5 in Figs. 6(b) and 6(c), respectively.
As expected from the averaged decay of the interactions in

both cases A and B and from the previous discussions, we

find that for the case B, SvN increases linearly in time,

while for A, the growth behavior is logarithmic.

Accordingly, we find the behavior of the mutual informa-

tion as we have found it for the case of homogeneously

decaying interactions: In case B, the initial mutual infor-

mation is zero, and a peak appears at a time around 2:8= �J.
In case A, in the logarithmic regime, we find an instanta-

neous increase of I1 due to the long-range part of the

interactions, which entangles distant parts instantaneously.

FIG. 5. The half-chain entropy growth rate c� from a linear fit

0< t �J < 3 after the quench (M ¼ 20, ED). Each c� is normal-

ized to its maximum value in the range 0:6<B< 1, c� ¼
½dSvN=dt�=max½dSvN=dtðBÞ�. The dashed line is the contour

for maximum growth, i.e., c� ¼ 1= �J. The points show the

location of the quantum phase transition, which we extract

from a MPO Lanczos diagonalization for 100 spins.
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In a realistic experiment setup, the string of ions will be

subjected to noise. Here, we consider the two most signifi-

cant imperfections: (i) fluctuations in the energy splitting

of the electronic states used to encode a spin (e.g., due to

ambient magnetic field fluctuations) and (ii) fluctuations in

the coupling strength between the spin-dependent force

mechanism and the ions (e.g., due to laser-intensity fluc-

tuations). Noise of the form (i) will lead to a correlated

rotation of the qubits around the z axis, while noise of type
(ii) causes a stochastic fluctuation of the overall interaction

strength �J. We idealize both cases as white noise fluctua-

tions 
ðtÞ, 
ð0Þ
ðtÞ ¼ s��ðtÞ with strength s� (the bar

denotes the time average). The evolution of the state can

then be described by a Stratonovich stochastic Schrödinger

equation [55,56]

djc i ¼ �iĤjc idt� i
ffiffiffiffiffi

s�
p

L̂�jc idWðtÞ; (14)

where dWðtÞ is the Wiener increment, and L̂� is the noise

(jump) operator. For case (i), L1 ¼ B
P

i�̂
z
i ; for case (ii),

L2 ¼
P

i;jJi;j�̂
x
i �̂

x
j . Equivalently, we can derive a master

equation for the evolution of the full density matrix,

d�

dt
¼ �i½Ĥ; �� � s�

2
½L̂�; ½L̂�; ���: (15)

In the long-time limit, the master equation drives the

system into a state that commutes with the jump operators.

For noise of type (i), this is a state diagonal in the z basis,
and for type (ii), it is a state diagonal in the x basis. For the
time scales of the experiment, the dynamics consists of a

complicated interplay between the coherent evolution and

the dissipative part. In general, we expect that noise of

type (i) leads to a global dephasing in the sense that it will

reduce the purity of the full state and thus result in a

slightly higher measured entropy, whereas noise of

type (ii) can be more complicated because an overall

fluctuation of �J acts with different strengths between dif-

ferent spins according to Ji;j. We can simulate the evolu-

tion of the master equation numerically by evolving the

stochastic Schrödinger equation in time using a first-order

semi-implicit method with strong order 1.0 convergence

[55] and statistically averaging over a large amount of

trajectories.

In Figs. 6(b) and 6(c), we find that, as expected, the noise

adds an additional entropy growth as a function of time for

both the half-chain entropy and the mutual information.

However, the underlying entropy features, which arise

from the entanglement buildup in the coherent evolution,

remain clearly visible. For example, instead of the short-

time initial mutual information being zero in the regime of

the linear SvN growth regime, for noise of type (i) we find

an overall increase of I1;5 as a function of time.

Nevertheless, the quasiparticle peak clearly remains ob-

servable even in the presence of the noise. In general, we

find that the overall entropy growth that is induced by the

fluctuations on B is larger than the one induced by fluctua-

tions on Ji;j. In particular, we find that the mutual infor-

mation between distant spins is very robust against noise

on the coupling strength because of the decay of Ji;j with

distance. In case A, we find that for long times, the char-

acteristic logarithmic growth eventually breaks down be-

cause of the entropy increase from the noise; however, for

t �J & 3, it remains observable. In general, these results

suggest that the mutual information is a very robust ex-

perimental measure for the entanglement growth behavior

of the systems, which, furthermore, can be easily extracted

from experimental data, as we show in the next section.

B. Measurements of block entropies and

mutual information

We will now briefly review how the entanglement mea-

sures we used in this paper can be measured experimen-

tally. To calculate the von Neumann entropy of a

subsystem A of l spins (which do not have to be next to

each other), one can simply measure the reduced density

(b)

(a)

(c)

B

FIG. 6. (a) The averaged normalized interactions for the two

experimental setups (grey dots). In case A, interactions decay

with �< 1 over short distances; in case B, they decay as �� 2.
(b) The evolution of the half-chain von Neumann entropy SvN
(exponential scale for caseA) in a system with 20 ions (ED). The

solid line is the idealized noiseless case. The dashed lines in (b)

and (c) are for fluctuations of the magnetic field with s1 ¼
0:01= �J; the dotted lines in (b) and (c) are for fluctuations in

the coupling strength with s2 ¼ 0:01= �J (200 noise trajectories).

(c) Time evolution of the mutual information I1;5. The character-
istic features of the two entanglement growth regimes survive in

the presence of the noise.
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matrix of that block. While the process of measuring this

matrix is known as quantum-state tomography, we show

that for our particular experimental setup, this tomography

simplifies significantly.

The reduced density matrix of A, after tracing over the

remaining system, is

~� A ¼
X

�;�

~��
�j�ih�j; (16)

where bold greek symbols denote the set of indices for the

subsystem of spins, i.e., all 2MA binary representations of

MA spins: � ¼ ð�1; �2; . . . ; �MA
Þ with �k 2 f0; 1g. The

diagonal elements of ~�A can be easily measured. They

are the probabilities for finding the spin combination �,

p�. The off-diagonal elements are more challenging but

reduce to the measurement of spin correlations.

For our experimental situation, we can make use of the

fact that for any time-evolved state jc ðtÞi ¼ P

�c�ðtÞj�i,

c�ðtÞ ¼ 0 ,
M

M

k

�k ¼ 1; (17)

where
L

denotes the sum modulo 2. This result is easily

verified by the fact that the matrix elements of any power of

Hamiltonian (1) h�jĤnj�i ¼ 0 for
L

M
k �k �

L

M
k �k.

Thus, since we start in the state with c�ðt¼0Þ¼��;0, the

time-evolution operator expð�itĤÞ¼P

n¼0ð�itĤÞn=n!
can only produce states with nonzero coefficients c�ðtÞ
for which

L

M
k �k ¼ 0. Thus, half the elements of any

reduced density matrix calculated from the time-evolved

state jc ðtÞi will always remain zero. The remaining spin-

spin correlations consist only of �x and �y terms.

We illustrate this here for the example of a subsystem of

a single spin (l ¼ 1) and two spins (l ¼ 2) and show how to

reconstruct the corresponding density matrix. In the case of

a single spin, the density matrix will be diagonal:

~� 1 ¼ p0j0ih0j þ p1j1ih1j: (18)

Here, the off-diagonal part completely vanishes since trivi-

ally, for all ~��
� with � � �, � � � ¼ 1. For a block of two

spins, the density matrix becomes

~�2 ¼

p00 0 0 p11
00

0 p01 p10
01 0

0 ðp10
01Þ� p10 0

ðp11
00Þ� 0 0 p11

0

B

B

B

B

B

@

1

C

C

C

C

C

A

: (19)

The six density-matrix values are all that have to be mea-

sured. To experimentally obtain the off-diagonal elements,

one has to measure the real and imaginary parts of �11
00 and

�10
01. This can be done by expanding those elements into

spin-spin correlations via

Re ð�11
00Þ ¼ ð�̂x � �̂x � �̂y � �̂yÞ=4; (20)

Im ð�11
00Þ ¼ ð�̂x � �̂y þ �̂y � �̂xÞ=4; (21)

Re ð�10
01Þ ¼ ð�̂x � �̂x þ �̂y � �̂yÞ=4; (22)

Im ð�11
00Þ ¼ ð�̂y � �̂x � �̂x � �̂yÞ=4; (23)

which means that four spin correlations have to be mea-

sured. Thus, for the whole density matrix ~�2, a total of

eight expectation values have to be experimentally deter-

mined. Note that this is a simplified version of full

quantum-state tomography for two qubits [22]; however,

a full state tomography, i.e., a measurement of all density-

matrix elements, might be useful to quantify the deviations

of the other elements from zero and therefore get a measure

for experimental deviations.

From the density matrices, one can directly extract the

corresponding von Neumann entropy. Note, however, that

one can also calculate Renyi entropies of arbitrary order n.

These entropies are defined as S½n�ð�Þ¼ log2½trð~�Þ�=ð1�nÞ
and can serve as lower bounds to the von Neumann en-

tropy. In an analogous fashion, one can use these entropies

to define mutual information.
A generalization of the density-matrix measurement to

larger blocks is straightforward. In particular, for a block
length of l sites, one has to measure a total amount of

½22l�2 þ 2ðl�1Þ� density-matrix values. For example, to
clearly observe a linear entanglement increase for � ¼ 2,
onewould have to simulate the system until a time of�2= �J
[cf. Fig. 3(a)]. Before finite-size effects of the block size
play a role, one therefore has to consider a block with
l ¼ 8. While this seems to be achievable in current experi-
ments (full state tomography for systems consisting of
eight ions have been reported in [57]), we emphasize that
ultimately the direct measurement of entanglement entro-
pies of larger blocks becomes essentially impossible. This
result is due to the fact that the number of correlation
functions that have to be measured experimentally in-
creases exponentially with the block size l. However, it is
important to note that the mutual information can always
be extracted by only using blocks of l ¼ 1 and l ¼ 2.
Alternatively to measuring the mutual information, the

problem of measuring entanglement entropies of large

blocks could be overcome by using recently proposed

measurement schemes, which rely on the preparation of

identical copies of the same state [58,59]. In this case,

either Rabi oscillations of a quantum switch (coupled to

the copies [60]) or ‘‘beam-splitter’’ operations between

those copies and repeated measurements of the spin con-

figurations [61] could be used for an experimental estima-

tion of Renyi entropies. Multiple copies could, for

example, be realized by performing the quench identically

for cotrapped strings in microtraps. Alternatively, one

could use a single, large string and hiding pulses to effec-

tively realize two copies.
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V. CONCLUSION AND OUTLOOK

We have studied the dynamical evolution of entangle-
ment in quench experiments in ion traps. We found that a
regime of linear half-chain von Neumann entropy growth is
present even for relatively long-range interactions with
interaction decay exponents of � * 1. The growth rate is
sensitive to the underlying low-energy spectrum and nota-
bly largest at the point of the quantum phase transition,
which varies with changing �. For longer-range interac-
tions, we find a regime of logarithmic entropy growth
(� & 1), and for infinite-range interactions (� ¼ 0), the
entropy remains bound by a small constant and oscillates
rapidly. We showed that mutual information between dis-
tant parts of the system can be experimentally measured
and used to distinguish the different regimes.

The entanglement entropy growth behavior has impor-

tant implications for t-DMRG/MPS/MPO algorithms on

classical computers since it underlies the complexity of

these algorithms. For a specific experimental example, we

have shown that this regime is in reach for an experimental

quantum simulator, which means that we can find a regime

in these systems that fulfills a necessary condition realiza-

tion of a quantum simulator regime where state-of-the-art

numerical simulations on classical computers can become

inefficient. While this idea provides a general strong moti-

vation for experiments in this regime, we emphasize that, in

future work, the study of dynamics of different types of,

e.g., multipartite entanglement as a resource for specific

quantum-information applications could also be interesting.

We emphasize that ion-trap experiments are not the only

experimental realizations in which the entanglement dy-

namics studied here could be observed. For example, ex-

actly the same spin model [62] and also more complicated

models with long-range interactions can be realized in

systems with polar molecules [63,64] or Rydberg atoms

[65–68] in optical lattices. These systems would have the

disadvantage that the decay exponent is not directly tuna-

ble; however, they could have the advantage that half-chain

entropies might be easier to measure directly, by employ-

ing schemes that rely on the preparation of multiple copies

in an optical lattice [61].

In the final stages of preparing our manuscript, we

became aware of some related work [69], in which a local

quench in an Ising model with algebraically decaying

interactions is studied, together with the resulting spread

of quasiparticles. Though our quenches are qualitatively

different, and large-scale-entanglement growth cannot be

observed in a local quench, Ref. [69] has interesting par-

allels with what we observe here, and it identifies similar

parameter regimes for dynamics with long-range and

short-range interactions.
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APPENDIX A: NUMERICAL SIMULATIONS AND

ENTANGLEMENT GROWTH

In this appendix, we will give more details about the

connection of the entanglement growth behavior and the

numerical algorithms we use.

1. MPS simulations vs entanglement growth

There is an interesting connection between the time-

dependent growth of the half-chain von Neumann entropy

and the possibility to simulate dynamics on classical com-

puters. The dimension of the reduced density matrix for

half of the system is dimð�LÞ ¼ 2M=2 and thus grows

exponentially as a function of the system size. This ex-

ponential Hilbert-space growth is the reason why exact

numerical simulation becomes, in practice, impossible

for large system sizes. The von Neumann entropy is de-

fined as

SvN�Sð�LÞ��trð�Llog2�LÞ¼�
X

�L

�

�log2ð�Þ; (A1)

where in the second equation we defined the eigenvalues of

�L as � and introduced the number of nonzero eigenval-

ues, �L � dimð�LÞ. �L is called the Schmidt rank and can

be considered as an entanglement measure itself. Also note

that the maximum possible Schmidt rank grows exponen-

tially as a function of M, and correspondingly, the maxi-

mum possible von Neumann entropy grows linearly as

S½max�
vN ¼ M=2. However, the Schmidt rank for states as

they occur in typical experiments can be much smaller

than the dimension of �L. The approximation, which is

made in numerical DMRG or MPS algorithms (see below),

consists therefore of truncating the Schmidt rank (for all

possible bipartite splittings) at a maximum value, which is

called the bond dimension D, thus effectively limiting the

von Neumann entropy to S½MPS�
vN � log2ðDÞ. The error

made is called the truncated weight, �D ¼ P�L

i¼Dþ1 �.

The truncation made in typical DMRG simulations is

very significant. For example, considering a string of 50

spins, the dimension of �L is given by 2
25. If one represents

a state of this system by a MPS with a bond dimension of

DM=2 ¼ 1024, the size of the effective Hilbert space for

one-half of the system is still only around 0.003% of the

full Hilbert space. However, it is quite remarkable that this

approximation is, in many cases, quasiexact. The reason

for this is that most low-energy states of physical systems

in nature turn out to be, in fact, very slightly entangled. If,
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for example, in Hamiltonian (1) we restrict the interaction

to nearest neighbors (standard transverse Ising model),

then it can be proven that for the critical model, i.e., for

J ¼ B, where for an infinite system the energy gap

from the ground state to excited states disappears, the

entanglement entropy scales with the block length as

S½GS�L � log2ðLÞ. If the system is gapped, the entanglement

entropy scales as SL � const; i.e., it obeys an ‘‘area law’’

[70,71]. Thus, in the worst case (critical model), the bond

dimension only has to grow linearly with the system size,

and therefore ground states can be easily calculated up to a

quasiexact precision with DMRG or MPS for systems of

hundreds of spins.

It is obvious that, therefore, in a time-evolution simula-

tion, whether the simulation of the system over long times

with t-DMRG methods is, in practice, possible or not

depends on how fast the entanglement grows. If, in our

quench experiment with ions, the von Neumann entropy

grows linearly as a function of time, in order to keep �D
small, D has to grow exponentially as a function of time.

The computational resources to store a MPS thus grow

exponentially with the time the system is to be simulated,

which becomes prohibitively expensive for large system

sizes.

2. Exact diagonalization

Despite the exponential growth of the Hilbert space,

quantum systems of moderate size can still be diagonalized

exactly, simply by exploiting the sparseness of typical

Hamiltonians. For example, for 20 spins, the full

Hamiltonian is a 220 � 220 matrix, which is too large to

even store in the memory of current computer hardware.

However, the amount of nonzero elements of Hamiltonian

(1) is only Oð220Þ, even for a full interaction matrix.

Therefore, one can use Krylov subspace projection tech-

niques [72] to evaluate the matrix exponential of the

Hamiltonian matrix, as well as semi-implicit first-order

methods to propagate a state vector for systems of 20 spins

in time.

3. MPO/MPS algorithms

For larger systems, one has to use an alternative

approximate spin representation in the form of a matrix

product state (MPS) [37–41]. A MPS is defined as the

decomposition of the complex amplitudes of the

full quantum state of a lattice system, jc i ¼
P

fikgci1;i2;...;iM ji1iji2i . . . jiMi (M sites with local basis states

fjikig) into a matrix product. Specifically, we define a MPS

in its canonical form as

ci1;i2;...;iM � A½1�
i1
S½1�A½2�

i2
S½2� . . .S½M�1�A½M�

iM
: (A2)

Here, the A½k�
ik

are complex unitary Di�1 �Di matrices

in an effective basis, and for open boundary conditions,

D0 ¼ DM ¼ 1. The S½i� are real diagonalDi �Di matrices

with unit norm, S½i�yS½i� ¼ 1. Any arbitrary state can be
brought into the form (A2) by making use of subsequent
singular-value decompositions of the M-dimensional ten-
sor ci1;i2;...;iM (see, e.g., [40]). In general, the sizes of the

matrix dimensions that are required to represent a certain
state exactly are given by the Schmidt rank �i for the
bipartite splitting between sites i and iþ 1. Limiting all
matrix dimensions by the bond dimension D limits the

maximum allowed von Neumann entropy to S½MPS�
vN �

log2ðDÞ. Note that in the case of D ¼ 1, S½MPS�
vN ¼ 0, and

it is readily seen that the MPS reduces to a nonentangled
product state.
We can study systems with long-range interactions

numerically by making use of MPOs, which are as the
MPSs, a decomposition of the now real 4M-dimensional

operator tensor of the full Hamiltonian H ¼
P

fikg;fjkgo
j1;j2;...;jM
i1;i2;...;iM

ji1iji2i . . . jiMihj1jhj2j . . . hjMj into a ma-

trix product. The long-range interaction Hamiltonian (1)
with a decaying interaction Jij ¼ �J=ji� jj� can be, up to a

very good approximation, implemented as a MPO with
relatively small bond dimension, which can be achieved
by expanding the power-law decay function into a sum of
exponentials [34–36]. With the Hamiltonian in MPO
form, it is then possible to implement time-evolution
algorithms, using, e.g., a Runge-Kutta–type evolution
scheme [50]. Alternatively, one can also use the original
adaptive t-DMRG methods [37–39] and introduce swap
gates, which interchange indices in a MPS. This has the
advantage that arbitrary interaction matrices Jij can be

implemented.
To calculate ground states, one can either evolve a MPS

in negative imaginary time, or one can construct the local
representations of the Hamiltonian expectation value by
leaving the indices on a particular site open and contracting
the remaining tensor network (see, e.g., [40]). We then use
a local iterative Lanczos solver to find the local MPS
matrix, which minimizes the corresponding energy. By
sweeping through the system from site to site, this is a
very efficient method to find the overall MPS ground state
for large systems.
We checked the validity of all our results by comparing

different methods, and we confirm the convergence in the
bond dimension by running multiple calculations with
increasingly large D.

APPENDIX B: DETAILS ON ANALYTICAL

CALCULATIONS

1. Quasiparticle contribution to the half-chain

entropy growth

Here, we give more details for the quasiparticle picture

for the nearest-neighbor Ising model. Following [49], the

nearest-neighbor transverse Ising Hamiltonian (7) can be

rewritten in terms of local spin-lowering and spin-raising

operators, �	
j � ð�x

j 	 i�y
jÞ=2. With a Jordan-Wigner
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transformation, these operators can be mapped to anticom-

muting quasiparticles via ci¼½expði�Pi�1
j¼1�

þ
j �

�
j Þ���

i ¼
Q

i�1
j¼1ð1�2�þ

j �
�
j Þ��

i . We thus end up with a fermionic

Hamiltonian

H ¼ J
X

i

ðcyi � ciÞðcyiþ1 þ ciþ1Þ þ B
X

i

ðcyi ci � cic
y
i Þ:

(B1)

Assuming translational invariance and expanding the qua-

siparticle operators into plane waves, the Hamiltonian in

quasimomentum space becomes

H¼
X

q>0

cyq c�q

� � ~�q 2iJsinðqaÞ
�2iJsinðqaÞ �~�q

 !

cq

cy�q

 !

;

(B2)

with anticommuting fermions cq, fcq; c0qg ¼ �q;q0 and ~�q ¼
2J cosðqaÞ þ 2B. ForM spins, the quasimomenta are given

by q ¼ n2�=ðaMÞ, where a is the separation of the spins,

and n ¼ �M=2; . . . ;M=2� 1. The Hamiltonian can be

diagonalized using a unitary (Bogoliubov) transformation,

where the new fermionic quasiparticles � are given by

ð�y
q ; ��qÞ ¼ UBðcyq ; c�qÞ. Performing this transformation

leads to the diagonal model

H ¼
X

q

�q

�

�y
q�q �

1

2

�

; (B3)

where the dispersion relation of the new particles is given

by �q ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðJ � BÞ2 þ 4JBsin2ðqa=2Þ
p

.

Example dispersion relations and corresponding group

velocities vgðqÞ=a ¼ d�q=dðqaÞ are shown in Fig. 7(a). At
the critical point, the gap closes, and the dispersion relation

is linear around q ¼ 0. In this regime, the particles with the

Lieb-Robinson velocity jvRj are found for q� 0, whereas
for B � J, the fastest particles shift to larger jqj. For

B  J and B � J, the fastest quasiparticles are found at

q�	�=2.
We can analyze how the propagation of free quasipar-

ticle pairs contributes to the entanglement growth by look-

ing at the mutual information between distant spins. In

Fig. 7(b), we plot the mutual information I1;j between site 1

and j while increasing j ¼ 4; . . . ; 10 for nearest-neighbor

interactions and for � ¼ 2. We find that in both cases, for

two particular spins that are separated by some distance,

the mutual information remains nearly zero for a long time,

until it suddenly peaks at a time corresponding to the

arrival of a quasiparticle pair originally produced on a

site between the two spins, which then entangles the two

spins. After the quasiparticles pass, the mutual information

remains at a value slightly greater than zero (barely vis-

ible). We find that the time of the arrival of the wave at site

j is consistent with quasiparticles moving at the

Lieb-Robinson velocity for nearest-neighbor interactions.

Since the two sites become entangled once a quasiparticle

that has been created in the middle of the two sites first

arrives at both spins, this time is given by tj ¼
ðj� 2Þ=2vR ¼ ðj� 2Þ=2a �J and is shown as black bars

in Fig. 7(b). In the lower panel, we find that even for

� ¼ 2, despite the rather long-range interactions, the

characteristic behavior is the same. For longer-range

interactions, we find that the wave moves more slowly.

Furthermore, we note that for � ! 1 one finds a much

more ‘‘diffusive’’ behavior, in the sense that the peaks of

mutual information broaden and become smaller with

distance.

The peaks in Fig. 7(b) allow us to extract an effective

velocity of the ‘‘wave’’ of entangling quasiparticles, vI.

We do this by fitting a line to the position of the peaks

(in time) as a function of the distance j to obtain 1=vI. As

we show in Fig. 7(c), the rate of the half-block entropy

increase (linear fit 1 � t �J � 3) is directly related to vI. We

find that for � * 5, SvNðtÞ ¼ �vIt=a with � 
 0:253. For
� & 3, the proportionality constant starts to depend on �
and �< 0:253. This means that for an increasing range of

interactions, both the half-chain entropy growth rate and vI

reduce, and vI decreases less strongly. We note that, in

general, � also depends on B.

FIG. 7. (a) Quasiparticle dispersion relations for the nearest-

neighbor Ising Hamiltonian for B ¼ 0 and B ¼ J, �q. The

corresponding group velocities vgðqÞ=a ¼ d�q=dðqaÞ are shown
as dashed lines (right axis). (b) The time evolution of the mutual

information I1;j between the leftmost spin and j ¼ 4; . . . ; 10

(ED, B ¼ 1, M ¼ 20; different I1;j offset by �0:1 for different

j, for better visibility). The upper panel is for � ! 1 (nearest-

neighbor interactions), the lower panel for � ¼ 2. The vertical

black bars indicate the analytical result of the entangled quasi-

particle pair arrival, calculated from the group velocity. (c) The

half-chain entropy growth rates (linear fit 1< t �J < 3, ED, B ¼
1, M ¼ 20) compared to the effective velocity of the entangling

‘‘quasiparticle wave’’ vI (see text). We extract vI from a linear

fit to the position of the mutual information peaks in panel (c).
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2. Model for infinite-range interactions

in the Dicke-state basis

Here, we give more details on our calculation for

infinite-range interactions, i.e., a model where each spin

interacts with equal strength with all others. As shown in

the main text, in this regime the Hamiltonian for M ions

becomes a spin-M/2 model, which is known as the LMG

model [45,46,51],

Ĥ ¼ J

2
S2x þ BSz �

J

2
M; (B4)

with a basis given by the Dicke states
�

�

�

�

�

�

�

�

S ¼ M

2
; mS ¼ n1 �

M

2

�

� Sjfn0; n1gi: (B5)

We want to calculate the bipartite entanglement for a

splitting in the center of the chain. Therefore, we make use

of a formula for the Schmidt decomposition of Dicke states

[51]. Specifically, any spin-M/2 Dicke state can be rewrit-

ten as a sum over product states of two spin-M/4 Dicke

states, for the left and right halves of the system, respec-

tively. For n1 spins up, this decomposition can be written as

�

�

�

�

�

�

�

�

M

2
;n1�

M

2

�

¼
X

M=2

l¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffi

plðn1Þ
q

�

�

�

�

�

�

�

�

M

4
;l�M

4

�

L

�

�

�

�

�

�

�

�

M

4
;n1� l�M

4

�

R
:

(B6)

The pl can be found using combinatorical arguments,

plðn1Þ ¼
M=2
l

� �

M=2
n1 � l

� �

M
n1

� � : (B7)

The von Neumann entropy of half the chain can be trivially

extracted from the pl since they are simply the eigenvalues

of the reduced density matrix for half the chain. Therefore,

SvN ¼ �Plpllog2ðplÞ.
In our quench experiment, initially the ion chain is in the

Dicke state jM=2;�M=2i, and the subsequent time evolu-

tion will rotate the state vector in the Dicke manifold and

therefore prepare a time-dependent superposition

jc ðtÞi ¼
X

m

cmðtÞjM=2; mi: (B8)

Numerically determining the cmðtÞ is easily achieved for

large systems, since the dimension of the Hilbert space is

only given byMþ 1. However, when inserting the formula

(B6) into (B8), the resulting decomposition is not a proper

Schmidt decomposition anymore since the ‘‘Schmidt val-

ues’’ can be complex now. Therefore, one has to construct

the full reduced density matrix by tracing over one-half of

the system,

�L ¼
X

mr

�

M

4
; mr

�

�

�

�

�

�

�

�

c ðtÞ
��

c ðtÞ
�

�

�

�

�

�

�

�

M

4
; mr

�

: (B9)

Performing the partial trace, we find

�LðtÞ¼
X

l

X

~m;m

c�~mðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffi

plð ~mÞ
q

c ~mðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffi

plðmÞ
q

�

�

�

�

�

�

�

�

M

4
; ~mþM

4
�l

�

�
�

M

4
;mþM

4
�l

�

�

�

�

�

�

�

�L
: (B10)

This matrix can then be easily diagonalized numerically,

which allows us to time dependently calculate the half-

chain entropy.

For the same reason as discussed in Sec. IVB, we find

that half the coefficients cmðtÞwill always remain zero. The

Hamiltonian only couples terms with m $ m	 2. Thus,
the amount of nonzero eigenvalues of the matrix (B10) is

limited by M=4þ 1 (for even M). This gives the upper

bound of the entropy, SvN � log2ðM=4þ 1Þ.

APPENDIX C: REALISTIC EXPERIMENT

WITH 20 IONS

In Sec. IV, the entanglement growth is analyzed in
experimentally realistic situations. Here, we give details
on the exact experimental parameters considered. In each
case, we consider a string of 20 ions in a 3D harmonic
trap with highest transverse motional frequency !t ¼
2�� 4:9 MHz and variable lowest axial frequency 0:1<
!z=2�< 0:5 MHz. A state-dependent driving force is
simulated at a fixed detuning � ¼ þ2�� 80 kHz from
!t. These three parameters are sufficient to completely
determine the form of the interaction matrix [31,32].
In order to vary the interaction strength, we choose to

vary !z, which has the effect of changing how closely
spaced the transverse modes are. For the cases shown in
Figs. 6(a)–6(c), we choose !z ¼ 2�� 0:45, 2�� 0:25,
and 2�� 0:1 MHz, respectively. Alternatively, one could
fix !z and change the detuning �.
The absolute value of the interaction strength �J is de-

termined by the specific choice of driving-force mecha-
nism, driving strength, ionic species, and electronic
transition used to encode the spin. We consider an optical
transition, at 729 nm, between the S1=2 (m ¼ 1=2), ground,
and metastable D5=2 (m ¼ 3=2) states in 40Caþ.
Copropagating bichromatic laser fields at 729 nm drive
the interaction, with a Rabi frequency of � ¼ 2��
0:5 MHz (if put on resonance with the electronic spin).
For the highest transverse mode cooled to the ground state,
the coupling strength on the upper vibrational sideband of
the transition is therefore �t� ¼ 2�� 22 kHz, where
�t ¼ 0:044 is the Lamb-Dicke parameter. In the case
�  �t�, the assumption that the phonon states can be
adiabatically eliminated holds. In our case, � 
 4�t�.
This approximation could be improved at the expense of
a slower overall interaction strength �J:
For the cases shown in Figs. 6(a)–6(c), we find overall

spin-spin coupling rates �J=2� ¼ 2�� 0:5, 2�� 0:4, and
2�� 0:3 kHz. These rates correspond to quantum dynam-

ics observable on time scales of a few ms, which compares

favorably with typical decoherence times of several 10’s of

ms that are typically achieved in these experiments.
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