176 research outputs found

    Anti-CD25 antibody-mediated depletion of effector T cell populations enhances susceptibility of mice to acute but not chronic Toxoplasma gondii infection.

    Get PDF
    Natural regulatory T cells (Tregs) constitutively express the IL-2R alpha-chain (CD25) on their surface. Consequently, administration of anti-CD25 Abs is a commonly used technique to deplete Treg populations in vivo. However, activated effector T cells may also transiently express CD25, and are thus also potential targets for anti-CD25 Abs. In this study using Toxoplasma gondii as a model proinflammatory infection, we have examined the capacity of anti-CD25 Abs to target effector T cell populations during an inflammatory episode, to determine to what extent that this action may modulate the outcome of disease. Anti-CD25 Ab-treated C57BL/6 mice displayed significantly reduced CD4(+) T cell IFN-gamma production during acute T. gondii infection and exhibited reduced weight loss and liver pathology during early acute infection; aspects of infection previously associated with effector CD4(+) T cell responses. In agreement, anti-CD25 Ab administration impaired parasite control and caused mice to succumb to infection during late acute/early chronic stages of infection with elevated tissue parasite burdens. In contrast, anti-CD25 Ab treatment of mice with established chronic infections did not markedly affect brain parasite burdens, suggesting that protective T cell populations do not express CD25 during chronic stages of T. gondii infection. In summary, we have demonstrated that anti-CD25 Abs may directly abrogate effector T cell responses during an inflammatory episode, highlighting important limitations of the use of anti-CD25 Ab administration to examine Treg function during inflammatory settings

    Socially Communicative Eye Contact and Gender Affect Memory

    Get PDF
    Because of their value as a socially communicative cue, researchers have strived to understand how the gaze of other people influences a variety of cognitive processes. Recent work in social attention suggests that the use of images of people in laboratory studies, as a substitute for real people, may not effectively test socially communicative aspects of eye gaze. As attention affects many other cognitive processes, it is likely that social attention between real individuals could also affect other cognitive processes, such as memory. However, from previous work alone, it is unclear whether, and if so how, socially communicative eye gaze affects memory. The present studies test the assumption that socially communicative aspects of eye gaze may impact memory by manipulating the eye gaze of a live speaker in the context of a traditional recognition paradigm used frequently in the laboratory. A female (Experiment 1) or male (Experiment 2) investigator read words aloud and varied whether eye contact was, or was not, made with a participant. With both female and male investigators, eye contact improved word recognition only for female participants and hindered word recognition in male participants. When a female investigator prolonged their eye contact (Experiment 3) to provide a longer opportunity to both observe and process the investigator’s eye gaze, the results replicated the findings from Experiments 1 and 2. The findings from Experiments 1–3 suggest that females interpret and use the investigator’s eye gaze differently than males. When key aspects from the previous experiments were replicated in a noncommunicative situation (i.e., when a video of a speaker is used instead of a live speaker; Experiment 4), the memory effects observed previously in response to eye gaze were eliminated. Together, these studies suggest that it is the socially communicative aspects of eye gaze from a real person that influence memory. The findings reveal the importance of using social cues that are communicative in nature (e.g., real people) when studying the relationship between social attention and memory

    Genome-wide expression analyses of Campylobacter jejuni NCTC11168 reveals coordinate regulation of motility and virulence by flhA.

    Get PDF
    We examined two variants of the genome-sequenced strain, Campylobacter jejuni NCTC11168, which show marked differences in their virulence properties including colonization of poultry, invasion of Caco-2 cells, and motility. Transcript profiles obtained from whole genome DNA microarrays and proteome analyses demonstrated that these differences are reflected in late flagellar structural components and in virulence factors including those involved in flagellar glycosylation and cytolethal distending toxin production. We identified putative sigma(28) and sigma(54) promoters for many of the affected genes and found that greater differences in expression were observed for sigma(28)-controlled genes. Inactivation of the gene encoding sigma(28), fliA, resulted in an unexpected increase in transcripts with sigma(54) promoters, as well as decreased transcription of sigma(28)-regulated genes. This was unlike the transcription profile observed for the attenuated C. jejuni variant, suggesting that the reduced virulence of this organism was not entirely due to impaired function of sigma(28). However, inactivation of flhA, an important component of the flagellar export apparatus, resulted in expression patterns similar to that of the attenuated variant. These findings indicate that the flagellar regulatory system plays an important role in campylobacter pathogenesis and that flhA is a key element involved in the coordinate regulation of late flagellar genes and of virulence factors in C. jejuni

    Effects of the high-density lipoprotein mimetic agent CER-001 on coronary atherosclerosis in patients with acute coronary syndromes: a randomized trial†

    Get PDF
    Aim High-density lipoproteins (HDLs) have several potentially protective vascular effects. Most clinical studies of therapies targeting HDL have failed to show benefits vs. placebo. Objective To investigate the effects of an HDL-mimetic agent on atherosclerosis by intravascular ultrasonography (IVUS) and quantitative coronary angiography (QCA). Design and setting A prospective, double-blinded, randomized trial was conducted at 51 centres in the USA, the Netherlands, Canada, and France. Intravascular ultrasonography and QCA were performed to assess coronary atherosclerosis at baseline and 3 (2-5) weeks after the last study infusion. Patients Five hundred and seven patients were randomized; 417 and 461 had paired IVUS and QCA measurements, respectively. Intervention Patients were randomized to receive 6 weekly infusions of placebo, 3 mg/kg, 6 mg/kg, or 12 mg/kg CER-001. Main outcome measures The primary efficacy parameter was the nominal change in the total atheroma volume. Nominal changes in per cent atheroma volume on IVUS and coronary scores on QCA were also pre-specified endpoints. Results The nominal change in the total atheroma volume (adjusted means) was −2.71, −3.13, −1.50, and −3.05 mm3 with placebo, CER-001 3 mg/kg, 6 mg/kg, and 12 mg/kg, respectively (primary analysis of 12 mg/kg vs. placebo: P = 0.81). There was also no difference among groups for the nominal change in per cent atheroma volume (0.02, −0.02, 0.01, and 0.19%; nominal P = 0.53 for 12 mg/kg vs. placebo). Change in the coronary artery score was −0.022, −0.036, −0.022, and −0.015 mm (nominal P = 0.25, 0.99, 0.55), and change in the cumulative coronary stenosis score was −0.51, 2.65, 0.71, and −0.77% (compared with placebo, nominal P = 0.85 for 12 mg/kg and nominal P = 0.01 for 3 mg/kg). The number of patients with major cardiovascular events was 10 (8.3%), 16 (13.3%), 17 (13.7%), and 12 (9.8%) in the four groups. Conclusion CER-001 infusions did not reduce coronary atherosclerosis on IVUS and QCA when compared with placebo. Whether CER-001 administered in other regimens or to other populations could favourably affect atherosclerosis must await further study. Name of the trial registry: Clinicaltrials.gov; Registry's URL: http://clinicaltrials.gov/ct2/show/NCT01201837?term=cer-001&rank=2; Trial registration number: NCT0120183

    Specific gut microbial, biological, and psychiatric profiling related to binge eating disorders: A cross-sectional study in obese patients

    Get PDF
    Background & aimsBinge eating disorder (BED) is a frequent eating disorder associated with obesity and co-morbidities including psychiatric pathologies, which represent a big health burden on the society.The biological processes related to BED remain unknown. Based on psychological testing, anthropometry, clinical biology, gut microbiota analysis and metabolomic assessment, we aimed to examine the complex biological and psychiatric profile of obese patients with and without BED.MethodsPsychological and biological characteristics (anthropometry, plasma biology, gut microbiota, blood pressure) of 101 obese subjects from the Food4Gut cohort were analysed to decipher the differences between BED and Non BED patients, classified based on the Questionnaire for Eating Disorder Diagnosis (Q-EDD). Microbial 16S rDNA sequencing and plasma non-targeted metabolomics (liquid chromatography-mass spectrometry) were performed in a subcohort of 91 and 39 patients respectively.ResultsBED subjects exhibited an impaired affect balance, deficits in inhibition and self-regulation together with marked alterations of eating behaviour (increased emotional and external eating). BED subjects displayed a lower blood pressure and hip circumference. A decrease in Akkermansia and Intestimonas as well as an increase in Bifidobacterium and Anaerostipes characterized BED subjects. Interestingly, metabolomics analysis revealed that BED subjects displayed a higher level of one food contaminants, Bisphenol A bis(2,3-dihydroxypropyl) ether (BADGE.2H(2)O) and a food derived-metabolite the Isovalerylcarnitine.ConclusionsNon-targeted omics approaches allow to select specific microbial genera and two plasma metabolites that characterize BED obese patients. Further studies are needed to confirm their potential role as drivers or biomarkers of binge eating disorder

    Protein Isoaspartate Methyltransferase Prevents Apoptosis Induced by Oxidative Stress in Endothelial Cells: Role of Bcl-Xl Deamidation and Methylation

    Get PDF
    BACKGROUND:Natural proteins undergo in vivo spontaneous post-biosynthetic deamidation of specific asparagine residues with isoaspartyl formation. Deamidated-isomerized molecules are both structurally and functionally altered. The enzyme isoaspartyl protein carboxyl-O-methyltransferase (PCMT; EC 2.1.1.77) has peculiar substrate specificity towards these deamidated proteins. It catalyzes methyl esterification of the free alpha-carboxyl group at the isoaspartyl site, thus initiating the repair of these abnormal proteins through the conversion of the isopeptide bond into a normal alpha-peptide bond. Deamidation occurs slowly during cellular and molecular aging, being accelerated by physical-chemical stresses brought to the living cells. Previous evidence supports a role of protein deamidation in the acquisition of susceptibility to apoptosis. Aim of this work was to shed a light on the role of PCMT in apoptosis clarifying the relevant mechanism(s). METHODOLOGY/PRINCIPAL FINDINGS:Endothelial cells transiently transfected with various constructs of PCMT, i.e. overexpressing wild type PCMT or negative dominants, were used to investigate the role of protein methylation during apoptosis induced by oxidative stress (H(2)O(2); 0.1-0.5 mM range). Results show that A) Cells overexpressing "wild type" human PCMT were resistant to apoptosis, whereas overexpression of antisense PCMT induces high sensitivity to apoptosis even at low H(2)O(2) concentrations. B) PCMT protective effect is specifically due to its methyltransferase activity rather than to any other non-enzymatic interactions. In fact negative dominants, overexpressing PCMT mutants devoid of catalytic activity do not prevent apoptosis. C) Cells transfected with antisense PCMT, or overexpressing a PCMT mutant, accumulate isoaspartyl-containing damaged proteins upon H(2)O(2) treatment. Proteomics allowed the identification of proteins, which are both PCMT substrates and apoptosis effectors, whose deamidation occurs under oxidative stress conditions leading to programmed cell death. These proteins, including Hsp70, Hsp90, actin, and Bcl-xL, are recognized and methylated by PCMT, according to the general repair mechanism of this methyltransferase. CONCLUSION/SIGNIFICANCE:Apoptosis can be modulated by "on/off" switch partitioning the amount of specific protein effectors, which are either in their active (native) or inactive (deamidated) molecular forms. Deamidated proteins can also be functionally restored through methylation. Bcl-xL provides a case for the role of PCMT in the maintenance of functional stability of this antiapoptotic protein

    Effects of the high-density lipoprotein mimetic agent CER-001 on coronary atherosclerosis in patients with acute coronary syndromes: a randomized trial†

    Get PDF
    Aim High-density lipoproteins (HDLs) have several potentially protective vascular effects. Most clinical studies of therapies targeting HDL have failed to show benefits vs. placebo. Objective: To investigate the effects of an HDL-mimetic agent on atherosclerosis by intravascular ultrasonography (IVUS) and quantitative coronary angiography (QCA). Design and setting A prospective, double-blinded, randomized trial was conducted at 51 centres in the USA, the Netherlands, Canada, and France. Intravascular ultrasonography and QCA were performed to assess coronary atherosclerosis at baseline and 3 (2–5) weeks after the last study infusion. Patients Five hundred and seven patients were randomized; 417 and 461 had paired IVUS and QCA measurements, respectively. Intervention Patients were randomized to receive 6 weekly infusions of placebo, 3 mg/kg, 6 mg/kg, or 12 mg/kg CER-001. Main outcome measures The primary efficacy parameter was the nominal change in the total atheroma volume. Nominal changes in per cent atheroma volume on IVUS and coronary scores on QCA were also pre-specified endpoints. Results: The nominal change in the total atheroma volume (adjusted means) was −2.71, −3.13, −1.50, and −3.05 mm3 with placebo, CER-001 3 mg/kg, 6 mg/kg, and 12 mg/kg, respectively (primary analysis of 12 mg/kg vs. placebo: P = 0.81). There was also no difference among groups for the nominal change in per cent atheroma volume (0.02, −0.02, 0.01, and 0.19%; nominal P = 0.53 for 12 mg/kg vs. placebo). Change in the coronary artery score was −0.022, −0.036, −0.022, and −0.015 mm (nominal P = 0.25, 0.99, 0.55), and change in the cumulative coronary stenosis score was −0.51, 2.65, 0.71, and −0.77% (compared with placebo, nominal P = 0.85 for 12 mg/kg and nominal P = 0.01 for 3 mg/kg). The number of patients with major cardiovascular events was 10 (8.3%), 16 (13.3%), 17 (13.7%), and 12 (9.8%) in the four groups. Conclusion: CER-001 infusions did not reduce coronary atherosclerosis on IVUS and QCA when compared with placebo. Whether CER-001 administered in other regimens or to other populations could favourably affect atherosclerosis must await further study. Name of the trial registry: Clinicaltrials.gov; Registry's URL: http://clinicaltrials.gov/ct2/show/NCT01201837?term=cer-001&rank=2; Trial registration number: NCT01201837

    Clodronate liposomes improve metabolic profile and reduce visceral adipose macrophage content in diet-induced obese mice

    Get PDF
    BACKGROUND: Obesity-related adipose inflammation has been thought to be a causal factor for the development of insulin resistance and type 2 diabetes. Infiltrated macrophages in adipose tissue of obese animals and humans are an important source for inflammatory cytokines. Clodronate liposomes can ablate macrophages by inducing apoptosis. In this study, we aim to determine whether peritoneal injection of clodronate liposomes has any beneficial effect on systemic glucose homeostasis/insulin sensitivity and whether macrophage content in visceral adipose tissue will be reduced in diet-induced obese (DIO) mice. METHODOLOGY/PRINCIPAL FINDINGS: Clodronate liposomes were used to deplete macrophages in lean and DIO mice. Macrophage content in visceral adipose tissue, metabolic parameters, glucose and insulin tolerance, adipose and liver histology, adipokine and cytokine production were examined. Hyperinsulinemic-euglycemic clamp study was also performed to assess systemic insulin sensitivity. Peritoneal injection of clodronate liposomes significantly reduced blood glucose and insulin levels in DIO mice. Systemic glucose tolerance and insulin sensitivity were mildly improved in both lean and DIO mice treated with clodronate liposomes by intraperitoneal (i.p.) injection. Hepatosteatosis was dramatically alleviated and suppression of hepatic glucose output was markedly increased in DIO mice treated with clodronate liposomes. Macrophage content in visceral adipose tissue of DIO mice was effectively decreased without affecting subcutaneous adipose tissue. Interestingly, levels of insulin sensitizing hormone adiponectin, including the high molecular weight form, were significantly elevated in circulation. CONCLUSIONS/SIGNIFICANCE: Intraperitoneal injection of clodronate liposomes reduces visceral adipose tissue macrophages, improves systemic glucose homeostasis and insulin sensitivity in DIO mice, which can be partially attributable to increased adiponectin levels
    • …
    corecore