63 research outputs found

    Chlorine Dioxide Is a Size-Selective Antimicrobial Agent

    Get PDF
    Background / Aims: ClO2, the so-called "ideal biocide", could also be applied as an antiseptic if it was understood why the solution killing microbes rapidly does not cause any harm to humans or to animals. Our aim was to find the source of that selectivity by studying its reaction-diffusion mechanism both theoretically and experimentally. Methods: ClO2 permeation measurements through protein membranes were performed and the time delay of ClO2 transport due to reaction and diffusion was determined. To calculate ClO2 penetration depths and estimate bacterial killing times, approximate solutions of the reaction-diffusion equation were derived. In these calculations evaporation rates of ClO2 were also measured and taken into account. Results: The rate law of the reaction-diffusion model predicts that the killing time is proportional to the square of the characteristic size (e. g. diameter) of a body, thus, small ones will be killed extremely fast. For example, the killing time for a bacterium is on the order of milliseconds in a 300 ppm ClO2 solution. Thus, a few minutes of contact time (limited by the volatility of ClO2) is quite enough to kill all bacteria, but short enough to keep ClO2 penetration into the living tissues of a greater organism safely below 0.1 mm, minimizing cytotoxic effects when applying it as an antiseptic. Additional properties of ClO2, advantageous for an antiseptic, are also discussed. Most importantly, that bacteria are not able to develop resistance against ClO2 as it reacts with biological thiols which play a vital role in all living organisms. Conclusion: Selectivity of ClO2 between humans and bacteria is based not on their different biochemistry, but on their different size. We hope initiating clinical applications of this promising local antiseptic

    Ciprofloxacin-loaded calcium alginate wafers prepared by freeze-drying technique for potential healing of chronic diabetic foot ulcers

    Get PDF
    Calcium alginate (CA) wafer dressings were prepared by lyophilization of hydrogels to deliver ciprofloxacin (CIP) directly to the wound site of infected diabetic foot ulcers (DFUs). The dressings were physically characterized by scanning electron microscopy (SEM), texture analysis (for mechanical and in vitro adhesion properties), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Further, functional properties essential for wound healing, i.e., porosity, in vitro swelling index, water absorption (Aw), equilibrium water content (EWC), water vapor transmission rate (WVTR), evaporative water loss (EWL), moisture content, in vitro drug release and kinetics, antimicrobial activity, and cell viability (MTT assay) were investigated. The wafers were soft, of uniform texture and thickness, and pliable in nature. Wafers showed ideal wound dressing characteristics in terms of fluid handling properties due to high porosity (SEM). XRD confirmed crystalline nature of the dressings and FTIR showed hydrogen bond formation between CA and CIP. The dressings showed initial fast release followed by sustained drug release which can inhibit and prevent re-infection caused by both Gram-positive and Gram-negative bacteria. The dressings also showed biocompatibility (> 85% cell viability over 72 h) with human adult keratinocytes. Therefore, it will be a potential medicated dressing for patients with DFUs infected with drug-resistant bacteria

    Gold: human exposure abd update on toxic risks

    No full text
    Gold is ubiquitous in the human environment and most people are in contact with it through wearing jewellery, dental devices, implants or therapies for rheumatoid arthritis. Gold is not a nutrient but people are exposed to it as a food colorant and in food chains. The present review discusses the hazards faced in personal and domestic use of gold and the far greater risks presented through occupational exposure to the metal in mining and processing gold ores. In the last situation, regular manual contact or inhalation of toxic or carcinogenic materials like mercury or arsenic respectively, presents far greater hazard and greatly complicates the evaluation of gold toxicity. The uses and risks presented by new technology and use of nanoparticulate gold in anti-cancer therapies and diagnostic medicine forms a major consideration in gold toxicity, where tissue uptake and distribution are determined largely by particle size and surface characteristics. Many human problems arise through the ability of metallic gold to induce allergic contact hypersensitivity. Whilst gold in jewellery can evoke allergic reactions, other metals such as nickel, chromium and copper present in white gold or alloys exhibit more serious clinical problems. It is concluded that toxic risks associated with gold are low in relation to the vast range of potential routes of exposure to the metal in everyday life
    corecore