110 research outputs found

    Anti-plasmodial polyvalent interactions in Artemisia annua L. aqueous extract – possible synergistic and resistance mechanisms

    Get PDF
    Artemisia annua hot water infusion (tea) has been used in in vitro experiments against P. falciparum malaria parasites to test potency relative to equivalent pure artemisinin. High performance liquid chromatography (HPLC) and mass spectrometric analyses were employed to determine the metabolite profile of tea including the concentrations of artemisinin (47.5±0.8 mg L-1), dihydroartemisinic acid (70.0±0.3 mg L-1), arteannuin B (1.3±0.0 mg L-1), isovitexin (105.0±7.2 mg L-1) and a range of polyphenolic acids. The tea extract, purified compounds from the extract, and the combination of artemisinin with the purified compounds were tested against chloroquine sensitive and chloroquine resistant strains of P. falciparum using the DNA-intercalative SYBR Green I assay. The results of these in vitro tests and of isobologram analyses of combination effects showed mild to strong antagonistic interactions between artemisinin and the compounds (9-epi-artemisinin and artemisitene) extracted from A. annua with significant (IC50 <1 μM) anti-plasmodial activities for the combination range evaluated. Mono-caffeoylquinic acids, tri-caffeoylquinic acid, artemisinic acid and arteannuin B showed additive interaction while rosmarinic acid showed synergistic interaction with artemisinin in the chloroquine sensitive strain at a combination ratio of 1:3 (artemisinin to purified compound). In the chloroquine resistant parasite, using the same ratio, these compounds strongly antagonised artemisinin anti-plasmodial activity with the exception of arteannuin B, which was synergistic. This result would suggest a mechanism targeting parasite resistance defenses for arteannuin B’s potentiation of artemisinin

    Formation of Toxic Oligomeric α-Synuclein Species in Living Cells

    Get PDF
    Background: Misfolding, oligomerization, and fibrillization of α-synuclein are thought to be central events in the onset and progression of Parkinson's disease (PD) and related disorders. Although fibrillar α-synuclein is a major component of Lewy bodies (LBs), recent data implicate prefibrillar, oligomeric intermediates as the toxic species. However, to date, oligomeric species have not been identified in living cells. Methodology/Principal Findings: Here we used bimolecular fluorescence complementation (BiFC) to directly visualize α-synuclein oligomerization in living cells, allowing us to study the initial events leading to α-synuclein oligomerization, the precursor to aggregate formation. This novel assay provides us with a tool with which to investigate how manipulations affecting α-synuclein aggregation affect the process over time. Stabilization of α-synuclein oligomers via BiFC results in increased cytotoxicity, which can be rescued by Hsp70 in a process that reduces the formation of α-synuclein oligomers. Introduction of PD-associated mutations in α-synuclein did not affect oligomer formation but the biochemical properties of the mutant α-synuclein oligomers differ from those of wild type α-synuclein. Conclusions/Significance: This novel application of the BiFC assay to the study of the molecular basis of neurodegenerative disorders enabled the direct visualization of α-synuclein oligomeric species in living cells and its modulation by Hsp70, constituting a novel important tool in the search for therapeutics for synucleinopathies

    Evaluating Nuclei Concentration in Amyloid Fibrillation Reactions Using Back-Calculation Approach

    Get PDF
    Background: In spite of our extensive knowledge of the more than 20 proteins associated with different amyloid diseases, we do not know how amyloid toxicity occurs or how to block its action. Recent contradictory reports suggest that the fibrils and/or the oligomer precursors cause toxicity. An estimate of their temporal concentration may broaden understanding of the amyloid aggregation process. Methodology/Principal Findings: Assuming that conversion of folded protein to fibril is initiated by a nucleation event, we back-calculate the distribution of nuclei concentration. The temporal in vitro concentration of nuclei for the model hormone, recombinant human insulin, is estimated to be in the picomolar range. This is a conservative estimate since the back-calculation method is likely to overestimate the nuclei concentration because it does not take into consideration fibril fragmentation, which would lower the amount of nuclei Conclusions: Because of their propensity to form aggregates (non-ordered) and fibrils (ordered), this very low concentration could explain the difficulty in isolating and blocking oligomers or nuclei toxicity and the long onset time for amyloid diseases

    Pre-Fibrillar α-Synuclein Mutants Cause Parkinson's Disease-Like Non-Motor Symptoms in Drosophila

    Get PDF
    Parkinson's disease (PD) is linked to the formation of insoluble fibrillar aggregates of the presynaptic protein α-Synuclein (αS) in neurons. The appearance of such aggregates coincides with severe motor deficits in human patients. These deficits are often preceded by non-motor symptoms such as sleep-related problems in the patients. PD-like motor deficits can be recapitulated in model organisms such as Drosophila melanogaster when αS is pan-neurally expressed. Interestingly, both these deficits are more severe when αS mutants with reduced aggregation properties are expressed in flies. This indicates that that αS aggregation is not the primary cause of the PD-like motor symptoms. Here we describe a model for PD in Drosophila which utilizes the targeted expression of αS mutants in a subset of dopadecarboxylase expressing serotonergic and dopaminergic (DA) neurons. Our results show that targeted expression of pre-fibrillar αS mutants not only recapitulates PD-like motor symptoms but also the preceding non-motor symptoms such as an abnormal sleep-like behavior, altered locomotor activity and abnormal circadian periodicity. Further, the results suggest that the observed non-motor symptoms in flies are caused by an early impairment of neuronal functions rather than by the loss of neurons due to cell death

    Spatial Extent of Charge Repulsion Regulates Assembly Pathways for Lysozyme Amyloid Fibrils

    Get PDF
    Formation of large protein fibrils with a characteristic cross β-sheet architecture is the key indicator for a wide variety of systemic and neurodegenerative amyloid diseases. Recent experiments have strongly implicated oligomeric intermediates, transiently formed during fibril assembly, as critical contributors to cellular toxicity in amyloid diseases. At the same time, amyloid fibril assembly can proceed along different assembly pathways that might or might not involve such oligomeric intermediates. Elucidating the mechanisms that determine whether fibril formation proceeds along non-oligomeric or oligomeric pathways, therefore, is important not just for understanding amyloid fibril assembly at the molecular level but also for developing new targets for intervening with fibril formation. We have investigated fibril formation by hen egg white lysozyme, an enzyme for which human variants underlie non-neuropathic amyloidosis. Using a combination of static and dynamic light scattering, atomic force microscopy and circular dichroism, we find that amyloidogenic lysozyme monomers switch between three different assembly pathways: from monomeric to oligomeric fibril assembly and, eventually, disordered precipitation as the ionic strength of the solution increases. Fibril assembly only occurred under conditions of net repulsion among the amyloidogenic monomers while net attraction caused precipitation. The transition from monomeric to oligomeric fibril assembly, in turn, occurred as salt-mediated charge screening reduced repulsion among individual charged residues on the same monomer. We suggest a model of amyloid fibril formation in which repulsive charge interactions are a prerequisite for ordered fibril assembly. Furthermore, the spatial extent of non-specific charge screening selects between monomeric and oligomeric assembly pathways by affecting which subset of denatured states can form suitable intermolecular bonds and by altering the energetic and entropic requirements for the initial intermediates emerging along the monomeric vs. oligomeric assembly path

    Uptake of Aggregating Transthyretin by Fat Body in a Drosophila Model for TTR-Associated Amyloidosis

    Get PDF
    Background: A functional link has been established between the severe neurodegenerative disorder Familial amyloidotic polyneuropathy and the enhanced propensity of the plasma protein transthyretin (TTR) to form aggregates in patients with single point mutations in the TTR gene. Previous work has led to the establishment of an experimental model based on transgenic expression of normal or mutant forms of human TTR in Drosophila flies. Remarkably, the severity of the phenotype was greater in flies that expressed a single copy than with two copies of the mutated gene. Methodology/Principal Findings: In this study, we analyze the distribution of normal and mutant TTR in transgenic flies, and the ultrastructure of TTR-positive tissues to clarify if aggregates and/or amyloid filaments are formed. We report the formation of intracellular aggregates of 20 nm spherules and amyloid filaments in thoracic adipose tissue and in brain glia, two tissues that do not express the transgene. The formation of aggregates of nanospherules increased with age and was more considerable in flies with two copies of mutated TTR. Treatment of human neuronal cells with protein extracts prepared from TTR flies of different age showed that the extracts from older flies were less toxic than those from younger flies. Conclusions/Significance: These findings suggest that the uptake of TTR from the circulation and its subsequent segregation into cytoplasmic quasi-crystalline arrays of nanospherules is part of a mechanism that neutralizes the toxic effect of TTR.Original Publication:Malgorzata Pokrzywa, Ingrid Dacklin, Monika Vestling, Dan Hultmark, Erik Lundgren and Rafael Cantera, Uptake of Aggregating Transthyretin by Fat Body in a Drosophila Model for TTR-Associated Amyloidosis, 2010, PLOS ONE, (5), 12.http://dx.doi.org/10.1371/journal.pone.0014343Licensee: Public Library of Science (PLoS)http://www.plos.org

    Finite Size Effects in Simulations of Protein Aggregation

    Get PDF
    It is becoming increasingly clear that the soluble protofibrillar species that proceed amyloid fibril formation are associated with a range of neurodegenerative disorders such as Alzheimer's and Parkinson diseases. Computer simulations of the processes that lead to the formation of these oligomeric species are starting to make significant contributions to our understanding of the determinants of protein aggregation. We simulate different systems at constant concentration but with a different number of peptides and we study the how the finite number of proteins affects the underlying free energy of the system and therefore the relative stability of the species involved in the process. If not taken into account, this finite size effect can undermine the validity of theoretical predictions regarding the relative stability of the species involved and the rates of conversion from one to the other. We discuss the reasons that give rise to this finite size effect form both a probabilistic and energy fluctuations point of view and also how this problem can be dealt by a finite size scaling analysis

    Laboratory Evolution of Fast-Folding Green Fluorescent Protein Using Secretory Pathway Quality Control

    Get PDF
    Green fluorescent protein (GFP) has undergone a long history of optimization to become one of the most popular proteins in all of cell biology. It is thermally and chemically robust and produces a pronounced fluorescent phenotype when expressed in cells of all types. Recently, a superfolder GFP was engineered with increased resistance to denaturation and improved folding kinetics. Here we report that unlike other well-folded variants of GFP (e.g., GFPmut2), superfolder GFP was spared from elimination when targeted for secretion via the SecYEG translocase. This prompted us to hypothesize that the folding quality control inherent to this secretory pathway could be used as a platform for engineering similar ‘superfolded’ proteins. To test this, we targeted a combinatorial library of GFPmut2 variants to the SecYEG translocase and isolated several superfolded variants that accumulated in the cytoplasm due to their enhanced folding properties. Each of these GFP variants exhibited much faster folding kinetics than the parental GFPmut2 protein and one of these, designated superfast GFP, folded at a rate that even exceeded superfolder GFP. Remarkably, these GFP variants exhibited little to no loss in specific fluorescence activity relative to GFPmut2, suggesting that the process of superfolding can be accomplished without altering the proteins' normal function. Overall, we demonstrate that laboratory evolution combined with secretory pathway quality control enables sampling of largely unexplored amino-acid sequences for the discovery of artificial, high-performance proteins with properties that are unparalleled in their naturally occurring analogues

    Abeta42-Induced Neurodegeneration via an Age-Dependent Autophagic-Lysosomal Injury in Drosophila

    Get PDF
    The mechanism of widespread neuronal death occurring in Alzheimer's disease (AD) remains enigmatic even after extensive investigation during the last two decades. Amyloid beta 42 peptide (Aβ1–42) is believed to play a causative role in the development of AD. Here we expressed human Aβ1–42 and amyloid beta 40 (Aβ1–40) in Drosophila neurons. Aβ1–42 but not Aβ1–40 causes an extensive accumulation of autophagic vesicles that become increasingly dysfunctional with age. Aβ1–42-induced impairment of the degradative function, as well as the structural integrity, of post-lysosomal autophagic vesicles triggers a neurodegenerative cascade that can be enhanced by autophagy activation or partially rescued by autophagy inhibition. Compromise and leakage from post-lysosomal vesicles result in cytosolic acidification, additional damage to membranes and organelles, and erosive destruction of cytoplasm leading to eventual neuron death. Neuronal autophagy initially appears to play a pro-survival role that changes in an age-dependent way to a pro-death role in the context of Aβ1–42 expression. Our in vivo observations provide a mechanistic understanding for the differential neurotoxicity of Aβ1–42 and Aβ1–40, and reveal an Aβ1–42-induced death execution pathway mediated by an age-dependent autophagic-lysosomal injury

    Modelling the Role of the Hsp70/Hsp90 System in the Maintenance of Protein Homeostasis

    Get PDF
    Neurodegeneration is an age-related disorder which is characterised by the accumulation of aggregated protein and neuronal cell death. There are many different neurodegenerative diseases which are classified according to the specific proteins involved and the regions of the brain which are affected. Despite individual differences, there are common mechanisms at the sub-cellular level leading to loss of protein homeostasis. The two central systems in protein homeostasis are the chaperone system, which promotes correct protein folding, and the cellular proteolytic system, which degrades misfolded or damaged proteins. Since these systems and their interactions are very complex, we use mathematical modelling to aid understanding of the processes involved. The model developed in this study focuses on the role of Hsp70 (IPR00103) and Hsp90 (IPR001404) chaperones in preventing both protein aggregation and cell death. Simulations were performed under three different conditions: no stress; transient stress due to an increase in reactive oxygen species; and high stress due to sustained increases in reactive oxygen species. The model predicts that protein homeostasis can be maintained during short periods of stress. However, under long periods of stress, the chaperone system becomes overwhelmed and the probability of cell death pathways being activated increases. Simulations were also run in which cell death mediated by the JNK (P45983) and p38 (Q16539) pathways was inhibited. The model predicts that inhibiting either or both of these pathways may delay cell death but does not stop the aggregation process and that eventually cells die due to aggregated protein inhibiting proteasomal function. This problem can be overcome if the sequestration of aggregated protein into inclusion bodies is enhanced. This model predicts responses to reactive oxygen species-mediated stress that are consistent with currently available experimental data. The model can be used to assess specific interventions to reduce cell death due to impaired protein homeostasis
    • …
    corecore