334 research outputs found

    Near-threshold production of W±W^\pm, Z0Z^0 and H0H^0 at a fixed-target experiment at the future ultra-high-energy proton colliders

    Get PDF
    We outline the opportunities to study the production of the Standard Model bosons, W±W^\pm, Z0Z^0 and H0H^0 at "low" energies at fixed-target experiments based at possible future ultra-high-energy proton colliders, \ie\ the High-Energy LHC, the Super proton-proton Collider and the Future Circular Collider -- hadron-hadron. These can be indeed made in conjunction with the proposed future colliders designed to reach up to s=100\sqrt{s}=100 TeV by using bent crystals to extract part of the halo of the beam which would then impinge on a fixed target. Without disturbing the collider operation, this technique allows for the extraction of a substantial amount of particles in addition to serve for a beam-cleaning purpose. With this method, high-luminosity fixed-target studies at centre-of-mass energies above the W±W^\pm, Z0Z^0 and H0H^0 masses, s170300\sqrt{s} \simeq 170-300 GeV, are possible. We also discuss the possibility offered by an internal gas target, which can also be used as luminosity monitor by studying the beam transverse shape

    Prospectives for A Fixed-Target ExpeRiment at the LHC: AFTER@LHC

    Full text link
    We argue that the concept of a multi-purpose fixed-target experiment with the proton or lead-ion LHC beams extracted by a bent crystal would offer a number of ground-breaking precision-physics opportunities. The multi-TeV LHC beams will allow for the most energetic fixed-target experiments ever performed. The fixed-target mode has the advantage of allowing for high luminosities, spin measurements with a polarised target, and access over the full backward rapidity domain --uncharted until now-- up to x_F ~ -1.Comment: 6 pages, 1 table, LaTeX. Proceedings of the 36th International Conference on High Energy Physics (ICHEP2012), 4-11 July 2012, Melbourne, Australi

    Spin physics at A Fixed-Target ExpeRiment at the LHC (AFTER@LHC)

    Full text link
    We outline the opportunities for spin physics which are offered by a next generation and multi-purpose fixed-target experiment exploiting the proton LHC beam extracted by a bent crystal. In particular, we focus on the study of single transverse spin asymetries with the polarisation of the target.Comment: Contributed to the 20th International Spin Physics Symposium, SPIN2012, 17-22 September 2012, Dubna, Russia, 4 pages, LaTe

    A Fixed-Target ExpeRiment at the LHC (AFTER@LHC) : luminosities, target polarisation and a selection of physics studies

    Full text link
    We report on a future multi-purpose fixed-target experiment with the proton or lead ion LHC beams extracted by a bent crystal. The multi-TeV LHC beams allow for the most energetic fixed-target experiments ever performed. Such an experiment, tentatively named AFTER for "A Fixed-Target ExperRiment", gives access to new domains of particle and nuclear physics complementing that of collider experiments, in particular at RHIC and at the EIC projects. The instantaneous luminosity at AFTER using typical targets surpasses that of RHIC by more than 3 orders of magnitude. Beam extraction by a bent crystal offers an ideal way to obtain a clean and very collimated high-energy beam, without decreasing the performance of the LHC. The fixed-target mode also has the advantage of allowing for spin measurements with a polarised target and for an access over the full backward rapidity domain up to xF ~ - 1. Here, we elaborate on the reachable luminosities, the target polarisation and a selection of measurements with hydrogen and deuterium targets.Comment: 6 pages. Proceedings of the Sixth International Conference on Quarks and Nuclear Physics QNP2012 (16-20 April 2012, Ecole Polytechnique, Palaiseau,France

    Near-Threshold Production of ± , 0 , and 0 at a Fixed-Target Experiment at the Future Ultrahigh-Energy Proton Colliders

    Get PDF
    We outline the opportunities to study the production of the Standard Model bosons, ± , 0 , and 0 , at "low" energies at fixed-target experiments based on possible future ultrahigh-energy proton colliders, that is, the High-Energy LHC, the Super proton-proton Collider, and the Future Circular Collider hadron-hadron. These can be indeed made in conjunction with the proposed future colliders designed to reach up to √ = 100 TeV by using bent crystals to extract part of the halo of the beam which would then impinge on a fixed target. Without disturbing the collider operation, this technique allows for the extraction of a substantial amount of particles in addition to serving for a beam-cleaning purpose. With this method, high-luminosity fixed-target studies at centreof-mass energies above the ± , 0 , and 0 masses, √ ≃ 170-300 GeV, are possible. We also discuss the possibility offered by an internal gas target, which can also be used as luminosity monitor by studying the beam transverse shape

    Central Exclusive Dijet Production

    Full text link
    Calculations of central exclusive production are affected by very large perturbative and non-perturbative corrections. In this talk, we summarize the results of a study of the uncertainties on these corrections in the case of exclusive dijet production.Comment: To appear in the Proceedings of the 43rd Rencontres de Moriond, QCD and High Energy Interactions, La Thuile, Italy, 1-8 March 200

    Gravitational Lensing, Dark Matter and the Optical Gravitational Lens Experiment

    Get PDF
    After briefly reviewing the history of gravitational lensing, we recall the basic principles of the theory. We then describe and use a simple optical gravitational lens experiment which has the virtue of accounting for all types of image configurations observed so far among the presently known gravitational lens systems. Finally, we briefly present the 4m International Liquid Mirror Telescope project in the context of a photometric monitoring of multiply imaged quasars

    Predictions for p+p+Pb Collisions at sNN=5\sqrt{s_{NN}} = 5 TeV: Comparison with Data

    Full text link
    Predictions made in Albacete {\it et al} prior to the LHC p+p+Pb run at sNN=5\sqrt{s_{NN}} = 5 TeV are compared to currently available data. Some predictions shown here have been updated by including the same experimental cuts as the data. Some additional predictions are also presented, especially for quarkonia, that were provided to the experiments before the data were made public but were too late for the original publication are also shown here.Comment: 55 pages 35 figure
    corecore