340 research outputs found

    Tunable Assembly of Photocatalytic Colloidal Coatings for Antibacterial Applications

    Get PDF
    In this study, evaporation-induced size segregation and interparticle interactions are harnessed to tune the microstructure of photocatalytic colloidal coatings containing TiO2 nanoparticles and polymer particles. This enabled the fabrication of a library of five distinct microstructures: TiO2-on-top stratification, a thin top layer of polymer or TiO2, homogeneous films of raspberry particles, and a sandwich structure. The photocatalytic and antibacterial activities of the coatings were evaluated by testing the viability of Methicillin-resistant Staphylococcus aureus (MRSA) bacteria using the ISO-27447 protocol, showing a strong correlation with the microstructure. UVA irradiation for 4 h induces a reduction in MRSA viability in all coating systems, ranging from 0.6 to 1.1 log. Films with TiO2-enriched top surfaces exhibit better resistance to prolonged exposure to disinfection and bacterial testing. The remaining systems, nonetheless, present higher antibacterial activity because of a larger number of pores and coating defects that enhance light and water accessibility for the generation and transport of reactive oxygen species. This work establishes design rules for photocatalytic coatings based on the interplay between performance and film architecture, offering valuable insights for several applications, including antibacterial surfaces, self-cleaning/antifogging applications, and water purification

    Soft and rigid core latex nanoparticles prepared by RAFT-mediated surfactant-free emulsion polymerization for cellulose modification – a comparative study

    Get PDF
    Latex nanoparticles comprising cationically charged coronas and hydrophobic cores with different glass transition temperatures (Tg) have been prepared by surfactant-free, RAFT-mediated emulsion polymerization, where the particles form through a polymerization-induced self-assembly (PISA) type mechanism. Poly(2-dimethylaminoethyl methacrylate-co-methacrylic acid) (P(DMAEMA-co-MAA)) was utilized as a hydrophilic macroRAFT agent for the polymerization of methyl methacrylate (MMA) or n-butyl methacrylate (nBMA), respectively, resulting in two different latexes, with either a core of high (PMMA) or low (PnBMA) Tg polymer. By varying the molar mass of the hydrophobic block, latexes of different sizes were obtained (DHca. 40–120 nm). The adsorption of the latexes to cellulose model surfaces and cellulose nanofibrils (CNF) was studied using quartz crystal microbalance with dissipation monitoring (QCM-D). The surfaces with adsorbed PnBMA latexes yielded hydrophobic surfaces both before and after annealing, whereas surfaces with adsorbed PMMA latex became hydrophobic only after annealing, clearly showing the influence of the Tg of the core. The latexes were also used to modify macroscopic cellulose in the form of filter papers. Similar to the CNF surfaces, no annealing was required to achieve hydrophobic surfaces with PnBMA latexes. Finally, nanocomposites of CNF and the polymer nanoparticles were prepared through a one-pot mixing procedure. It was found that the largest synthesized PMMA latex (120 nm) facilitated a more strainable CNF network at 50% relative humidity, with a nearly 200% increase in strain at break compared to the neat CNF reference film as well as to the composite films with PnBMA latexes or to the smaller sized PMMA latexes. This difference was attributed to the spherical shape and rigidity of the large PMMA latex nanoparticles during composite formation. This highly interesting result should indeed be considered in the future design of novel biocomposites.</p

    Amphiphilic core-cross-linked micelles functionalized with bis(4-methoxyphenyl)phenylphosphine as catalytic nanoreactors for biphasic hydroformylation

    Get PDF
    Core-cross-linked micelles (CCM) functionalized at the core with covalently linked bis(p-methoxyphenyl) phenylphosphine (BMOPPP) ligands have been synthesized by a three-step one-pot radical polymerization in emulsion, using the polymerization-induced self-assembly (PISA) strategy and reversible addition-fragmentation chain transfer (RAFT) as the controlling method. The CCM are obtained by chain extending in water poly(methacrylic acid-co-poly(ethylene oxide) methyl ether methacrylate) (P(MAA-co-PEOMA), degree of polymerization of 30, MAA/PEOMA units molar ratio of 50:50) synthesized in a first step by RAFT with a 95:5 M mixture of styrene and 4-[bis(p-methoxyphenyl)phosphino]styrene (BMOPPS) units. The resulting micelles exhibiting a core composed of P(S-co-BMOPPS) segments with a degree of polymerization of 300 are then crosslinked in a third step with a mixture of di(ethylene glycol) dimethacrylate (DEGDMA) and styrene. The resulting BMOPPP@CCM exhibit a narrow size distribution (PDI = 0.16) with an average diameter of 81 nm in water and swell in THF or by addition of toluene to the latex. The addition of [Rh(acac) (CO)2] to the toluene-swollen latex results in metal coordination to the phosphine ligands. 31P{1H} NMR spectroscopy shows that the Rh centers undergo rapid intraparticle phosphine ligand exchange. Application of these nanoreactors to the aqueous biphasic hydroformylation of 1-octene shows excellent activity and moderate catalyst leaching

    Enhanced water barrier properties of surfactant-free polymer films obtained by macroRAFT-mediated emulsion polymerization

    Get PDF
    The presence of low-molar-mass surfactants in latex films results in detrimental effects on their water permeability, gloss, and adhesion. For applications such as coatings, there is a need to develop formulations that do not contain surfactants and have better water barrier properties. Having previously reported the synthesis of surfactant-free latex particles in water using low amounts ( < 2 wt %) of chains synthesized by controlled radical polymerization (Lesage de la Haye et al. Macromolecules 2017, 50, 9315-9328), here we study the water barrier properties of films made from these particles and their application in anticorrosion coatings. When films cast from aqueous dispersions of acrylate copolymer particles stabilized with poly(sodium 4-styrenesulfonate) (PSSNa) were immersed in water for 3 days, they sorbed only 4 wt % water. This uptake is only slightly higher than the value predicted for the pure copolymer, indicating that the negative effects of any particle boundaries and hydrophilic-stabilizing molecules are minimal. This sorption of liquid water is 5 times lower than what is found in films cast from particles stabilized with the same proportion of poly(methacrylic acid) (PMAA), which is more hydrophilic than PSSNa. In water vapor with 90% relative humidity, the PSSNa-based film had an equilibrium sorption of only 4 wt %. A small increase in the PMAA content has a strong and negative impact on the barrier properties. Nuclear magnetic resonance relaxometry on polymer films after immersion in water shows that water clusters have the smallest size in the films containing PSSNa. Furthermore, these films retain their optical clarity during immersion in liquid water for up to 90 min, whereas all other compositions quickly develop opacity ("water whitening") as a result of light scattering from sorbed water. This implies a remarkably complete coalescence and a very small density of defects, which yields properties matching those of some solvent-borne films. The latex stabilized with PSSNa is implemented as the binder in a paint formulation for application as an anticorrosive barrier coating on steel substrates and evaluated in accelerated weathering and corrosion tests. Our results demonstrate the potential of self-stabilized latex particles for the development of different applications, such as waterborne protective coatings and pressure-sensitive adhesives

    Towards the conversion of carbohydrate biomass feedstocks to biofuels via hydroxylmethylfurfural

    Get PDF
    This review appraises the chemical conversion processes recently reported for the production of hydroxylmethylfurfural (HMF), a key biorefining intermediate, from carbohydrate biomass feedstocks. Catalytic sites or groups required for the efficient and selective conversion of hexose substrates to HMF are examined. The principle of concerted catalysis was used to rationalise the dehydration of fructose and glucose to HMF in non-aqueous media. A survey of reported reaction routes to diesel-range biofuel intermediates from HMF or furfural is presented and self-condensation reaction routes for linking two or more HMF and furfural units together toward obtaining kerosene and diesel-range biofuel intermediates are highlighted. The reaction routes include: benzoin condensation, condensation of furfuryl alcohols, hetero Diels–Alder reaction and ketonisation reaction. These reaction routes are yet to be exploited despite their potential for obtaining kerosene and diesel-range biofuel intermediates exclusively from furfural or hydroxylmethylfurfural

    Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer

    Get PDF
    The effective synthesis of two-dimensional transition metal dichalcogenides alloy is essential for successful application in electronic and optical devices based on a tunable band gap. Here we show a synthesis process for Mo&lt;inf&gt;1-x&lt;/inf&gt;W&lt;inf&gt;x&lt;/inf&gt;S&lt;inf&gt;2&lt;/inf&gt; alloy using sulfurization of super-cycle atomic layer deposition Mo&lt;inf&gt;1-x&lt;/inf&gt;W&lt;inf&gt;x&lt;/inf&gt;O&lt;inf&gt;y&lt;/inf&gt;. Various spectroscopic and microscopic results indicate that the synthesized Mo&lt;inf&gt;1-x&lt;/inf&gt;W&lt;inf&gt;x&lt;/inf&gt;S&lt;inf&gt;2&lt;/inf&gt; alloys have complete mixing of Mo and Watoms and tunable band gap by systematically controlled composition and layer number. Based on this, we synthesize a vertically composition-controlled (VCC) Mo&lt;inf&gt;1-x&lt;/inf&gt;W&lt;inf&gt;x&lt;/inf&gt;S&lt;inf&gt;2&lt;/inf&gt; multilayer using five continuous super-cycles with different cycle ratios for each super-cycle. Angle-resolved X-ray photoemission spectroscopy, Raman and ultraviolet-visible spectrophotometer results reveal that a VCC Mo&lt;inf&gt;1-x&lt;/inf&gt;W&lt;inf&gt;x&lt;/inf&gt;S&lt;inf&gt;2&lt;/inf&gt; multilayer has different vertical composition and broadband light absorption with strong interlayer coupling within a VCC Mo&lt;inf&gt;1-x&lt;/inf&gt;W&lt;inf&gt;x&lt;/inf&gt;S&lt;inf&gt;2&lt;/inf&gt; multilayer. Further, we demonstrate that a VCC Mo&lt;inf&gt;1-x&lt;/inf&gt;W&lt;inf&gt;x&lt;/inf&gt;S&lt;inf&gt;2&lt;/inf&gt; multilayer photodetector generates three to four times greater photocurrent than MoS&lt;inf&gt;2&lt;/inf&gt;-and WS&lt;inf&gt;2&lt;/inf&gt;-based devices, owing to the broadband light absorption. &amp;#169; 2015 Macmillan Publishers Limitedopen1

    Dynamic stratification in drying films of colloidal mixtures

    Get PDF
    In simulations and experiments, we study the drying of films containing mixtures of large and small colloidal particles in water. During drying, the mixture stratifies into a layer of the larger particles at the bottom with a layer of the smaller particles on top. We developed a model to show that a gradient in osmotic pressure, which develops dynamically during drying, is responsible for the segregation mechanism behind stratification

    In situ monitoring of latex film formation by small-angle neutron scattering: Evolving distributions of hydrophilic stabilizers in drying colloidal films

    Get PDF
    The distribution of hydrophilic species, such as surfactants, in latex films is of critical importance for the performance of adhesives, coatings and inks, among others. However, the evolution of this distribution during the film formation process and in the resulting dried films remains insufficiently elucidated. Here, we present in situ (wet) and ex situ (dry) SANS experiments that follow the film formation of two types of latex particles, which differ in their stabilizer: either a covalently bonded poly(methacrylic acid) (PMAA) segment or a physically adsorbed surfactant (sodium dodecyl sulfate, SDS). By fitting the experimental SANS data and combining with gravimetry experiments, we have ascertained the hydrophilic species distribution within the drying film and followed its evolution by correlating the size and shape of stabilizer clusters with the drying time. The evolution of the SDS distribution over drying time is being driven by a reduction in the interfacial free energy. However, the PMAA-based stabilizer macromolecules are restricted by their covalent bonding to core polymer chains and hence form high surface-area disc-like phases at the common boundary between particles and PMAA micelles. Contrary to an idealized view of film formation, the PMAA does not remain in the walls of a continuous honeycomb structure. The results presented here shed new light on the nanoscale distribution of hydrophilic species in drying and ageing latex films. We provide valuable insights into the influence of the stabilizer mobility on the final structure of latex films

    Mass transfer assessment and kinetic investigation of biphasic catalytic systems

    Get PDF
    Efficient catalyst recovery and recycling is still a major challenge for the development of homogeneous catalysis. In the 80’s, the concept of biphasic catalysis, in which the catalyst is confined into a solvent immiscible with the products, has opened new perspectives for transition metal complex driven homogeneous catalysis, after the industrial success of the Ruhrchemie/Rhone-Poulenc process operating the rhodium-catalyzed hydroformylation of propene in water. However, the low solubility of long-chain a-olefins has limited the scope of hydrosoluble catalysts for this reaction. To overcome this problem, various strategies have been developed since then, which consist in replacing water by a more suitable solvent or using additives/ligands able to increase the substrate solubility or create a favorable microenvironment in the aqueous phase. Apart from the screening/tailoring of solvent and ligand, the determination of an adequate kinetic model and the assessment of the mass transfer role is of great importance for the design and optimization of the multiphase reaction system. This presentation gives an account of collaborative works between chemical engineering and chemistry teams to address these issues for two different biphasic catalysis approaches: catalyst immobilization in ionic liquids and use of amphiphilic polymer ligands. The hydroformylation of oct-1-ene by rhodium complexes was selected as model reaction for the developed methodology. This includes the thermodynamic study of the complex reaction medium (gas-liquid and liquid-liquid equilibria), the thorough investigation of the effect of process parameters to evaluate the location of the catalytic act and the interfacial mass transfer resistance, the discrimination and identification of intrinsic kinetic models (derived from elementary reaction steps) and their coupling with (gas-liquid) mass transfer under low stirring conditions. In the first example, the role of the ionic liquids as solvents for biphasic catalysis was specified, by characterizing the solubility of both gaseous and organic substrates, and a detailed kinetic model was able to accurately describe the time-concentration profiles of reactants and products (1-octene,internal octenes, n-nonanal and branched aldehydes) measured in the organic phase. TOF values could be further improved (up to 560 h-1) by supporting the ionic liquid phase onto a silica gel support. In the second example, the proof of concept of cross-linked micelles as efficient supports for aqueous phase catalysis was established, demonstrating that the reaction occurs within the nano-objects with fast exchange with the organic phase. The study also provided clues for their optimization: a low functionalization degree and a nanogel structure embedding the phosphine moieties were proved to improve the catalytic activity and reduce the metal leaching, respectively. These innovative ligands yielded TOF in the range of 350 to 650 h-1 and linear/branched aldehyde ratios between 3 and 6. The Rh loss could be reduced to 0.1 ppm with adequate pH and temperature conditions
    corecore