9 research outputs found

    Developing a programmed restriction endonuclease for highly specific DNA cleavage

    Get PDF
    Specific cleavage of large DNA molecules at few sites, necessary for the analysis of genomic DNA or for targeting individual genes in complex genomes, requires endonucleases of extremely high specificity. Restriction endonucleases (REase) that recognize DNA sequences of 4–8 bp are not sufficiently specific for this purpose. In principle, the specificity of REases can be extended by fusion to sequence recognition modules, e.g. specific DNA-binding domains or triple-helix forming oligonucleotides (TFO). We have chosen to extend the specificity of REases using TFOs, given the combinatorial flexibility this fusion offers in addressing a short, yet precisely recognized restriction site next to a defined triple-helix forming site (TFS). We demonstrate here that the single chain variant of PvuII (scPvuII) covalently coupled via the bifunctional cross-linker N-(γ-maleimidobutryloxy) succinimide ester to a TFO (5′-NH(2)-[CH(2)](6 or 12)-MPMPMPMPMPPPPPPT-3′, with M being 5-methyl-2′-deoxycytidine and P being 5-[1-propynyl]-2′-deoxyuridine), cleaves DNA specifically at the recognition site of PvuII (CAGCTG) if located in a distance of approximately one helical turn to a TFS (underlined) complementary to the TFO (‘addressed’ site: 5′-TTTTTTTCTCTCTCTCN(∼10)CAGCTG-3′), leaving ‘unaddressed’ PvuII sites intact. The preference for cleavage of an ‘addressed’ compared to an ‘unaddressed’ site is >1000-fold, if the cleavage reaction is initiated by addition of Mg(2+) ions after preincubation of scPvuII-TFO and substrate in the absence of Mg(2+) ions to allow triple-helix formation before DNA cleavage. Single base pair substitutions in the TFS prevent addressed DNA cleavage by scPvuII-TFO

    Context dependence between subdomains in the DNA binding interface of the I-CreI homing endonuclease

    Get PDF
    Homing endonucleases (HE) have emerged as precise tools for achieving gene targeting events. Redesigned HEs with tailored specificities can be used to cleave new sequences, thereby considerably expanding the number of targetable genes and loci. With HEs, as well as with other protein scaffolds, context dependence of DNA/protein interaction patterns remains one of the major limitations for rational engineering of new DNA binders. Previous studies have shown strong crosstalk between different residues and regions of the DNA binding interface. To investigate this phenomenon, we systematically combined mutations from three groups of amino acids in the DNA binding regions of the I-CreI HE. Our results confirm that important crosstalk occurs throughout this interface in I-CreI. Detailed analysis of success rates identified a nearest-neighbour effect, with a more pronounced level of dependence between adjacent regions. Taken together, these data suggest that combinatorial engineering does not necessarily require the identification of separable functional or structural regions, and that groups of amino acids provide acceptable building blocks that can be assembled, overcoming the context dependency of the DNA binding interface. Furthermore, the present work describes a sequential method to engineer tailored HEs, wherein three contiguous regions are individually mutated and assembled to create HEs with engineered specificity

    Automated Purification of His 6

    No full text

    Energy-Filtering Transmission Electron Microscopy

    No full text
    corecore