454 research outputs found

    Structural and Functional Studies of the Plant Lectin Peanut Agglutinin

    Get PDF

    High-angular-resolution electron energy loss spectroscopy of hexagonal boron nitride

    Get PDF
    High-angular-resolution electron energy loss spectroscopy (EELS) is used to study the anisotropic behavior of the boron and nitrogen K ionization edges in h-BN. This work makes significant progress toward improving the anisotropy measurements. The authors show experimentally by EELS the vanishment of the p* peak existing in these K edges in agreement with electronic structure calculations and previous soft x-ray absorption spectroscopy measurements

    The Nascent Specter: Vision, Corporeality, Reproduction, and Modernity in Henry James and Photographic Theory

    Full text link
    Honors (Bachelor's)EnglishUniversity of Michiganhttp://deepblue.lib.umich.edu/bitstream/2027.42/107800/1/rzaluzec.pd

    Nanometer-scale sharpness in corner-overgrown heterostructures

    Full text link
    A corner-overgrown GaAs/AlGaAs heterostructure is investigated with transmission and scanning transmission electron microscopy, demonstrating self-limiting growth of an extremely sharp corner profile of 3.5 nm width. In the AlGaAs layers we observe self-ordered diagonal stripes, precipitating exactly at the corner, which are regions of increased Al content measured by an XEDS analysis. A quantitative model for self-limited growth is adapted to the present case of faceted MBE growth, and the corner sharpness is discussed in relation to quantum confined structures. We note that MBE corner overgrowth maintains nm-sharpness even after microns of growth, allowing the realization of corner-shaped nanostructures.Comment: 4 pages, 3 figure

    Radiation effects in Zr and Hf containing garnets

    Get PDF
    Garnets have been considered as host phases for the safe immobilisation of high-level nuclear waste, as they have been shown to accommodate a wide range of elements across three different cation sites, such as Ca, Y, Mn on the a-site, Fe, Al, U, Zr, and Ti on the b-site, and Si, Fe, Al on the c-site. Garnets, due to their ability to have variable composition, make ideal model materials for the examination of radiation damage and recovery in nuclear materials, including as potential waste forms. Kimzeyite, Ca3Zr2FeAlSiO12, has been shown naturally to contain up to 30 wt% Zr, and has previously been examined to elucidate both the structure and ordering within the lattice. This study examines the effects of radiation damage and recovery using in-situ ion beam irradiation with 1 MeV Kr ions at the IVEM-TANDEM facility, Argonne National Laboratory. The complementary Hf containing system Ca3Hf2FeAlSiO12 was also examined, and found to have a different response to irradiation damage. A sample of irradiated Ca3Zr2FeAlSiO12, at 1000 K, was characterised using aberration corrected (S)TEM and found to contain discreet, nano-sized, crystalline Fe rich particles, indicating a competing process during recovery is occurring
    corecore