509 research outputs found

    Leptin receptor JAK2/STAT3 signaling modulates expression of Frizzled receptors in articular chondrocytes

    Get PDF
    SummaryObjectiveDifferentiated articular chondrocytes express a functional bisoform of the leptin receptor (LRb); however, leptin-LRb signaling in these cells is poorly understood. We hypothesized that leptin-LRb signaling in articular chondrocytes functions to modulate canonical Wnt signaling events by altering the expression of Frizzled (FZD) receptors.MethodsHuman chondrocyte cell lines and primary articular chondrocytes were grown in serum containing growth media for 24h, followed by a media change to Dulbecco’s modified Eagle’s medium (DMEM) containing 1% Nutridoma-SP to obtain a serum-deficient environment for 24h before treatment. Treatments included recombinant human leptin (10–100nM), recombinant human IL-6 (0.3–3nM), or recombinant human erythropoietin (Epo) (10mU/ml). Cells were harvested 30min–48h after treatment and whole cell lysates were analyzed using immunoblots or luciferase assays.ResultsTreatment of cells with leptin resulted in activation of Janus kinase 2 (JAK2) and subsequent phosphorylation of specific tyrosine residues on LRb, followed by dose- and time-dependent increases in the expression of Frizzled-1 (FZD1) and Frizzled-7 (FZD7). Leptin-mediated increases in the expression of FZD1 were blocked by pre-treatment with the protein synthesis inhibitor cycloheximide or the JAK2 inhibitor AG490. Experiments using a series of hybrid Epo extracellular domain-leptin intracellular domain receptors (ELR) harboring mutations of specific tyrosine residues in the cytoplasmic tail showed that increases in the expression of FZD1 were dependent on LRb-mediated phosphorylation of STAT3, but not ERK1/2 or STAT5. Leptin pre-treatment of chondrocytes prior to Wnt3a stimulation resulted in an increased magnitude of canonical Wnt signaling.ConclusionThese experiments show that leptin-LRb signaling in articular chondrocytes modulates expression of canonical Wnt signaling receptors and suggests that direct cross-talk between these pathways is important in determining chondrocyte homeostasis

    Docosahexaenoic Acid supplementation, vascular function and risk factors for cardiovascular disease: a randomized controlled trial in young adults

    Get PDF
    A high consumption of omega-3 long-chain polyunsaturated fatty acids, and particularly docosahexaenoic acid (DHA), has been suggested to reduce the risk of cardiovascular disease (CVD). However, while DHA supplementation may have benefits for secondary prevention, few studies have investigated the role of DHA in the primary prevention of CVD. Here, we tested the hypothesis that DHA supplementation improves endothelial function and risk factors for CVD

    Effect of Land Management on Grassland Carbon Dioxide Fluxes

    Get PDF
    Grassland soils can act as both a source and sink for atmospheric carbon dioxide (CO2). Implementing grassland management practices that increase the rates of soil CO2 sequestration are urgently sought to offset Ireland’s agricultural greenhouse gas emissions. However, land management of Irish grasslands is not yet accounted for in the national inventories simultaneously posing a limitation and opportunity for refining modelled estimates of carbon sequestration. In this study, eddy covariance flux towers were established to monitor net ecosystem CO2 exchange (NEE), gross primary productivity (GPP) and ecosystem respiration (Re) in three grassland types (intensive dairy grazing, drystock grazing and zero- grazing) in geographically distinct agricultural catchments in Ireland. The initial results show larger magnitude of NEE, GPP and Re in intensively grazed and zero-grazed grasslands that are subject to frequent grazing/defoliation followed by recovery of photosynthetic potential. The continuously grazed drystock grassland exhibited lower NEE and GPP rates but smaller seasonal fluctuations in daily fluxes which may reflect the reduction in nutrient availability to support higher GPP. However, the drystock grazed grassland had significantly higher soil water content which may stimulate higher soil CO2 respiration resulting in lower NEE over time. Management practices involving defoliation and nutrient supply influenced affected season CO2 exchange but longer-term flux monitoring is required to assess the net ecosystem carbon budgets of each grassland system

    Mapping the rotational diffusion of fluorophores in cells with time-resolved wide-field fluorescence anisotropy imaging

    Get PDF
    CLEO/EUROPE ; EQEC European Quantum Electronics Conference, Munich ICM, Germany, 22-27 June, 2003N

    Bifidobacterial biofilm formation is a multifactorial adaptive phenomenon in response to bile exposure

    Get PDF
    In the current study, we show that biofilm formation by various strains and species belonging to Bifidobacterium, a genus that includes gut commensals with reported health-promoting activities, is induced by high concentrations of bile (0.5% (w/v) or higher) and individual bile salts (20 mM or higher), rather than by acid or osmotic stress. The transcriptomic response of a bifidobacterial prototype Bifidobacterium breve UCC2003 to such high bile concentrations was investigated and a random transposon bank of B. breve UCC2003 was screened for mutants that affect biofilm formation in order to identify genes involved in this adaptive process. Eleven mutants affected in their ability to form a biofilm were identified, while biofilm formation capacity of an insertional mutation in luxS and an exopolysaccharide (EPS) negative B. breve UCC2003 was also studied. Reduced capacity to form biofilm also caused reduced viability when exposed to porcine bile. We propose that bifidobacterial biofilm formation is an adaptive response to high concentrations of bile in order to avoid bactericidal effects of high bile concentrations in the gastrointestinal environment. Biofilm formation appears to be a multi-factorial process involving EPS production, proteins and extracellular DNA release, representing a crucial strategy in response to bile stress in order to enhance fitness in the gut environment

    Research priorities for pediatric intensive care nutrition within the United Kingdom : a National Institute of Health Research James Lind Alliance priority setting partnership

    Get PDF
    To determine research priorities in PICU nutrition, which represent the shared priorities of patients, parents, carers, and PICU healthcare professionals within the United Kingdom. A national multiphase priority setting methodology in partnership with the James Lind Alliance delivered over 16 months (June 2020-September 2021). Part 1: a national scoping survey asked respondents to submit their research uncertainties related to PICU nutrition. Part 2: summarizing and evidence-checking the submitted uncertainties. Part 3: interim prioritization survey. Part 4: consensus workshop. PICU. Patients, parents, and carers of patients who had been admitted to PICU, and PICU healthcare professionals involved in the treatment of these patients within the United Kingdom. None. A national scoping survey asked respondents to submit their research uncertainties related to PICU nutrition. In the first survey, 165 topic ideas were suggested (12% by parents/carers and 88% by PICU healthcare professionals). These were categorized into 57 summary questions. The existing evidence was searched to ensure that the proposed summary questions had not already been answered. Forty were judged to be true uncertainties following a systematic literature review. These 40 uncertainties were grouped into eight themes for the second interim survey, which asked respondents to prioritize their top research questions. One hundred and forty participants contributed to this second interim survey. A final shortlist of 25 questions was derived, with the top 18 questions taken to a multistakeholder workshop where a consensus was reached on the top 10 priorities. This research identified important research gaps in the management of patients in PICU. Areas that need to be addressed as a priority include energy requirements in ventilated neonates, nutritional supplementation of probiotics to manage and prevent sepsis, the impact of postintensive care syndrome on nutrition and growth, and when to commence parenteral (IV) nutrition. The challenge now is to refine and deliver answers to these research priorities. [Abstract copyright: Copyright © 2022 The Authors. Published by Wolters Kluwer Health, Inc. on behalf of the Society of Critical Care Medicine.

    Solutions to enteric methane abatement in Ireland

    Get PDF
    peer-reviewedThe efficiency of Ireland’s grass-based livestock systems can be attributed to high outputs, low production costs and a low carbon footprint relative to housed systems. Methane (CH4) is a potent greenhouse gas (GHG) of which enteric fermentation from livestock production is a key source, being directly responsible for 57% of Irish agricultural GHG emissions. There are a number of strategies including dietary manipulation and breeding initiatives that have shown promising results as potential mitigation solutions for ruminant livestock production. However, the majority of international research has predominantly been conducted on confined systems. Given the economic viability of Irish livestock systems, it is vital that any mitigation methods are assessed at pasture. Such research cannot be completed without access to suitable equipment for measuring CH4 emissions at grazing. This review documents the current knowledge capacity in Ireland (publications and projects) and includes an inventory of equipment currently available to conduct research. A number of strategic research avenues are identified herein that warrant further investigation including breeding initiatives and dietary manipulation. It was notable that enteric CH4 research seems to be lacking in Ireland as it constituted 14% of Irish agricultural GHG research publications from 2016 to 2021. A number of key infrastructural deficits were identified including respiration chambers (there are none currently operational in the Republic of Ireland) and an urgent need for more pasture-based GreenFeed™ systems. These deficits will need to be addressed to enable inventory refinement, research progression and the development of effective solutions to enteric CH4 abatement in Ireland

    Hybrid of swarm intelligent algorithms in medical applications

    Get PDF
    In this paper, we designed a hybrid of swarm intelligence algorithms to diagnose hepatitis, breast tissue, and dermatology conditions in patients with such infection. The effectiveness of hybrid swarm intelligent algorithms was studied since no single algorithm is effective in solving all types of problems. In this study, feed forward and Elman recurrent neural network (ERN) with swarm intelligent algorithms is used for the classification of the mentioned diseases. The capabilities of six (6) global optimization learning algorithms were studied and their performances in training as well as testing were compared. These algorithms include: hybrid of Cuckoo Search algorithm and Levenberg-Marquardt (LM) (CSLM), Cuckoo Search algorithm (CS) and backpropagation (BP) (CSBP), CS and ERN (CSERN), Artificial Bee Colony (ABC) and LM (ABCLM), ABC and BP (ABCBP), Genetic Algorithm (GA) and BP (GANN). Simulation comparative results indicated that the classification accuracy and run time of the CSLM outperform the CSERN, GANN, ABCBP, ABCLM, and CSBP in the breast tissue dataset. On the other hand, the CSERN performs better than the CSLM, GANN, ABCBP, ABCLM, and CSBP in both th

    Homeobox transcription factor muscle segment homeobox 2 (Msx2) correlates with good prognosis in breast cancer patients and induces apoptosis in vitro

    Get PDF
    Introduction: The homeobox-containing transcription factor muscle segment homeobox 2 (Msx2) plays an important role in mammary gland development. However, the clinical implications of Msx2 expression in breast cancer are unclear. The aims of this study were to investigate the potential clinical value of Msx2 as a breast cancer biomarker and to clarify its functional role in vitro. Methods: Msx2 gene expression was first examined in a well-validated breast cancer transcriptomic dataset of 295 patients. Msx2 protein expression was then evaluated by immunohistochemistry in a tissue microarray (TMA) containing 281 invasive breast tumours. Finally, to assess the functional role of Msx2 in vitro, Msx2 was ectopically expressed in a highly invasive breast tumour cell line (MDA-MB-231) and an immortalised breast cell line (MCF10a), and these cell lines were examined for changes in growth rate, cell death and cell signalling. Results: Examination of Msx2 mRNA expression in a breast cancer transcriptomic dataset demonstrated that increased levels of Msx2 were associated with good prognosis (P = 0.011). Evaluation of Msx2 protein expression on a TMA revealed that Msx2 was detectable in both tumour cell nuclei and cytoplasm. Cytoplasmic Msx2 expression was associated with low grade tumours (P = 0.012) and Ki67 negativity (P = 0.018). Nuclear Msx2 correlated with low-grade tumours (P = 0.015), estrogen receptor positivity (P = 0.038), low Ki67 (P = 0.005) and high cyclin D1 expression (P = 0.037). Increased cytoplasmic Msx2 expression was associated with a prolonged breast cancer-specific survival (P = 0.049), recurrence-free survival (P = 0.029) and overall survival (P = 0.019). Ectopic expression of Msx2 in breast cell lines resulted in radically decreased cell viability mediated by induction of cell death via apoptosis. Further analysis of Msx2-expressing cells revealed increased levels of p21 and phosphorylated extracellular signal-regulated kinase (ERK) and decreased levels of Survivin and the 'split ends' (SPEN) protein family member RBM15. Conclusions: We conclude that increased Msx2 expression results in improved outcome for breast cancer patients, possibly by increasing the likelihood of tumour cell death by apoptosis
    corecore