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Abstract
The efficiency of Ireland’s grass-based livestock systems can be attributed to high outputs, low production 
costs and a low carbon footprint relative to housed systems. Methane (CH

4
) is a potent greenhouse gas (GHG) 

of which enteric fermentation from livestock production is a key source, being directly responsible for 57% of 
Irish agricultural GHG emissions. There are a number of strategies including dietary manipulation and breeding 
initiatives that have shown promising results as potential mitigation solutions for ruminant livestock production. 
However, the majority of international research has predominantly been conducted on confined systems. Given the 
economic viability of Irish livestock systems, it is vital that any mitigation methods are assessed at pasture. Such 
research cannot be completed without access to suitable equipment for measuring CH

4
 emissions at grazing. This 

review documents the current knowledge capacity in Ireland (publications and projects) and includes an inventory 
of equipment currently available to conduct research. A number of strategic research avenues are identified herein 
that warrant further investigation including breeding initiatives and dietary manipulation. It was notable that enteric 
CH

4
 research seems to be lacking in Ireland as it constituted 14% of Irish agricultural GHG research publications 

from 2016 to 2021. A number of key infrastructural deficits were identified including respiration chambers (there 
are none currently operational in the Republic of Ireland) and an urgent need for more pasture-based GreenFeed™ 
systems. These deficits will need to be addressed to enable inventory refinement, research progression and the 
development of effective solutions to enteric CH

4
 abatement in Ireland.
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Introduction

Although methane (CH4) has a relatively short atmospheric 
residence time (half-life of 9.1 yrs), it is a potent greenhouse 
gas (GHG) with 84 times the global warming potential (GWP) 
of carbon dioxide (CO2) over its atmospheric residence time 
and 28 times that of CO2 over a 100-yr time horizon (GWP100) 
(IPCC, 2014). Methane is the second-largest contributor to 
anthropogenic climate change with global emissions estimated 
at 559 [540–568] Tg CH4/yr for the decade 2003–2012 
(Saunois et al., 2016). The principal anthropogenic sources are 
fossil fuel extraction and burning, with biogenic contributions 
associated with eructation from ruminants during fermentation 
of feed, management of organic wastes and manures and 
rice paddy cultivation (IPCC, 2014). In 2019, agriculture was 
responsible for 35.5% of Ireland’s GHG emissions, of which 
enteric CH4 comprised 57.45% (EPA, 2021).

Agricultural GHG emissions belong to the non-emissions 
trading sector (non-ETS), meaning that emissions from the 
sector are not subject to the European Union cap and trade 
system. This also means that national governments, rather 
than EU, are directly responsible for emission reductions in 
these sectors with the extent of each country’s reductions 
established under the 2030 Effort Sharing Regulation (ESR) 
(PE/3/2018/REV/2). Under the ESR, Ireland is obliged to 
reduce non-ETS GHG emissions by 30% relative to 2005 
over the 2021–2030 commitment period. This will require 
agriculture to limit emissions to between 17.5 and 19 million 
tonnes CO2 equivalent, while also establishing a downward 
trajectory to reach net zero emissions by 2050. In order to 
identify pathways for emissions reductions, a marginal 
abatement cost curve (MACC) analysis was conducted to 
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establish the potential mitigation capacity of the Agriculture, 
Forestry and Other Land-use (AFOLU) sectors and the 
associated costs (Lanigan et al., 2018). While other GHG 
such as nitrous oxide have been well researched regarding 
point sources and mitigation methods (Harty et al., 2016; Krol 
et al., 2016), there are many unanswered questions regarding 
the development of a suitable Irish CH4 abatement strategy.
There are a number of metrics for the expression of CH4 
emissions. These include: absolute emissions (total quantity 
of CH4 emissions produced), daily emissions (g CH4/day−1) 
(Cottle et al., 2015), emissions yield (g CH4/kg dry matter 
intake [DMI]) (Ym) (Hegarty et al., 2007; Løvendahl et al., 2018) 
and emissions intensity (g CH4/unit output i.e. milk or meat) 
(Gerber et al., 2011; Hayes et al., 2013). Current abatement 
strategies focus on improving efficiency measures, such as 
the dairy economic breeding index (EBI), increasing beef live 
weight gain, extended grazing and the use of sexed semen all 
of which can significantly reduce CH4 emissions intensity and 
associated production costs by increasing overall farm efficiency 
(Holden and Butler, 2018). However, these measures may not 
lead to reductions in absolute CH4 emissions, as increasing 
GHG efficiency can result in increased activity (and hence 
emissions) via so-called “rebound effects” (Paul et al., 2019). 
Reductions in absolute CH4 emissions require reductions in 
methane output per head and for the overall herd size not to 
increase. Although there has been progress in achieving this in 
confinement systems, reducing daily emissions from pastoral 
systems remains challenging, due to reduced control over 
animal feed consumption. Researchers in New Zealand are 
trying to address these challenges and have been doing so 
for many years (Buddle et al., 2011; Pacheco et al., 2014). In 
order to achieve carbon neutrality, major mitigation efforts will 
have to be established and implemented, particularly for CH4 
emissions resulting from enteric fermentation and offsetting of 
residual emissions through enhanced carbon sequestration. 
Thus, there is a requirement in Ireland to conduct research 
on mitigation strategies to reduce absolute CH4 emissions 
while cattle are at pasture. This will require the development 
of infrastructure and acquisition of necessary equipment to 
conduct high-level research.
Therefore, the specific aims of this review are: (1) to identify 
and critically review CH4 mitigation strategies that may be 
suitable for Irish livestock production systems, (2) to review 
enteric CH4 publications and projects conducted in Ireland to 
date, (3) to document the current Irish enteric CH4 inventories, 
and (4) to determine the infrastructures required in Ireland to 
allow for high-level research on decoupling CH4 emissions 
from livestock production to progress.

The process of enteric methane production
Enteric CH4 originates as a by-product of rumen microbial 
fermentation, the process through which ruminant livestock 

digest feed (Tapio et al., 2017). The majority (87%) of enteric 
CH4 is eructated from the forestomach (rumen). A smaller 
proportion (13%) originates in the hindgut where it is absorbed 
into the blood and exhaled from the lungs (Hammond et al., 
2016). Fermentation is carried out by a complex anaerobic 
microbial ecosystem, consisting of bacteria, archaea, protozoa 
and fungi, in the forestomach (rumen) of ruminant livestock 
(Huws et al., 2018). Individual members of the rumen microbial 
community play a key role in the fermentation of complex 
plant structures, and subsequent supply of nutrition, for the 
ruminant host. Indeed, during enteric (rumen) fermentation, 
ingested feed is converted into volatile fatty acids (VFA), which 
provide an estimated 63% of the ruminant animal’s energy 
requirements (Bergman, 1990). In addition to the supply of 
VFA to the ruminant host, rumen microbial fermentation yields 
carbon dioxide (CO2) and hydrogen (H2) as metabolic end-
products (Newbold & Ramos-Morales, 2020). The production 
of CH4, methanogenesis, acts as a H2 sink in the rumen, 
which facilitates the progression of further fermentation by 
preventing an accumulation of excess H2 which may otherwise 
hinder electron transport (Morgavi et al., 2010). Methanogens, 
belonging to the kingdom archaea, are the sole producers of 
CH4 in the rumen with the majority of enteric CH4 believed to 
originate from the hydrogenotrophic methanogenesis pathway 
(Equation 1), whereby CO2 is reduced by H2 (Janssen & Kris, 
2008). Finally, the majority of CH4 originating from ruminant 
livestock is expelled, to the atmosphere, via the breath of the 
animal (Hammond et al., 2016).

 →2 2 4 2CO + 4H  CH + 2H O (1)

The relationship between the rumen microbial community 
composition and CH4 output has been investigated in a variety 
of studies (Kittelmann et al., 2014; Wallace et al., 2015; Kamke 
et al., 2016; Wallace et al., 2019). As highlighted in many 
reviews (Morgavi et al., 2010; Tapio et al., 2017; Waters et al., 
2020), individual members of the rumen microbiome, rather 
than the overall size of any one microbial kingdom, have been 
linked to the methanogenic potential of an animal. As a result, 
practices which are capable of reducing the abundance of 
microbes that produce substrates for methanogenesis, or alter 
the methanogen community in favour of a reduced CH4 output, 
offer promise as successful CH4 mitigation strategies. Dietary 
regimes and animal selection are promising CH4 mitigation 
strategies as both dietary management (Carberry et al., 2014; 
Henderson et al., 2015; Lyons et al., 2017; Liu et al., 2019; 
Smith et al., 2020a) and host genetics (Weimer et al., 2010; 
Henderson et al., 2015; Roehe et al., 2016; Li et al., 2019) 
have been demonstrated to alter rumen microbial composition.

Methods for measuring methane
The main methods to measure CH4 emissions from ruminants 
include: (1) respiration chambers (RCs); (2) portable 
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Table 1: Summary of methane measurement equipment and associated cost, advantages and disadvantages

Method  Advantages  Disadvantages  Approximate cost

Respiration chambers
 Measures all CH4 emissions from 

the animal

 Does not represent field or grazing 

patterns

Artificial environment for the animal

 €50,000–€60,000 per chamber including 

individual air-conditioning, gas meters and 

associated devices

SF6  Measures CH4 at pasture  Large variability and difficult to 

maintain at pasture

 ∼ €10,000 for 20 sets. Equipment include 

individual measurement sets including 

canisters, absorption pipes (excluding gas 

chromatography techniques and pump 

required for analyses)

GreenFeeds  Measures CH4 at both indoor 

and at pasture

High accuracy of measurements

Easy to maintain relative to SF6

 Potential bias due to animal 

behaviour

Short-term measurements require 

long-term trials

 €65,000 per unit for indoor systems (up 

to €125,000 in total for additional costs of 

adding trailers for pasture-based systems)

Portable accumulation 

chambers (sheep)

 High levels of correlation with RC

Quick measurements cause less 

stress on the animal

Easy to operate

 Artificial environment for the animal 

which can cause stress.

Unsuited for longer and/or 

repeated daily measurements

 ∼ €80,000 per chamber including 

individual air-conditioning, gas meters and 

associated devices

Image 1. A sheep in a portable accumulation chamber, Teagasc, 
Athenry, Co. Galway.

accumulation chambers (PACs) (for smaller livestock); (3) 
GreenFeed™ (GF) systems; and (4) the sulphur hexafluoride 
tracer technique (SF6). Respiration chambers have been 
used to estimate energy losses and CH4 emissions from 
livestock for over a century (Hammond et al., 2016). The 
underlying principles of the RC involves keeping an animal in a 
pressurised chamber, with the enteric emissions of the animal 
estimated as the difference in the concentration of gases 
entering and leaving the chamber, with the fluctuation in gas 
concentrations assumed to be those emitted from the animal 
(eructated, exhaled and flatulence) (Storm et al., 2012). The 
experimental time period may vary but is typically ∼96 h (Muñoz 
et al., 2012). Emissions are determined as the difference in 
CH4 gas concentrations entering and leaving the chamber 
with and corrected for temperature, humidity and pressure. 
RCs are considered the “gold standard” for recording CH4 
measurements due to high levels of repeatability, robustness 
and precision (Gardiner et al., 2015; Patra, 2016). However, 
animals are required to be contained within a standardised 
chamber for the experimental period. Therefore, the method is 
unsuited to estimating emissions from animals under grazing 
conditions. One of the main disadvantages to RC is the 
changes in the behaviour of contained animals and DMI can 
drop, meaning in-chamber CH4 measurements may not reflect 
actual animal CH4 output (Table 1). Portable accumulation 
chambers act as airtight chambers that measure CH4 and CO2 
emissions from small animals such as sheep (Image 1). This 
method is considered a rapid (1 h), straightforward and highly 
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effective technique as results show high comparability with 
RC results (Goopy et al., 2016; Jonker et al., 2018). However, 
PAC cannot be deployed for longer periods as increased CO2 
concentration can negatively influence measurements, thus 
PAC only allows for measurements over a single time point 
(Hammond et al., 2016). Breath sampling during feeding 
can be analysed through GreenFeed™ (GF) systems. They 
operate as open-circuit head-chambers baited with feed 
pellets to attract the animal. Airflow inside the feed troughs is 
collected via an extractor fan, with the analyses of CH4 and CO2 
fluxes determined with the use of infra-red sensors, allowing 
for the calculation of CH4 concentration (Hristov et al., 2015; 
Huhtanen et al., 2015; Jonker et al., 2016). GreenFeed™ units 
can also be fitted with sensors to measure H2, O2 and H2S. The 
accuracy of CH4 measurements, obtained with the use of the 
GF system, can potentially be compromised, if visitation to the 
unit is not reflective of the diurnal pattern of enteric emissions 
(Hristov et al., 2018). As a result, it is imperative animals are 
permitted access to the unit at even intervals throughout a 24-h 
period over the duration of the measurement period. Feeding 
of bait to attract the animal to the GF may also cause issues, 
for example, if investigating forage diets, feeding concentrate 
feed may impact on the results. Similarly, if the cattle are on an 
ad libitum concentrate diet, they may not visit the GF unit and 
training the animals may be difficult (Table 1). GreenFeed™ 
systems are not restricted to housed environments and have 
been successfully used to measure CH4 emissions on intensive 
pasture-based dairy systems (Waghorn et al., 2016). Although 
GFs have been used primarily on cattle to date, there has 
been development of systems for use with sheep and calves 
(Nguyen et al., 2018; Meale et al., 2021). Another breath 
sampling method termed “the sniffer technique”, where a gas 
sampling inlet is placed within the feed manger of a robotic 
milking unit, measures CH4 emissions from the animal at 
milking events. From these measurements, the daily emission 
rates can be determined. However, as the sniffer technology 
has primarily been developed for assessing the methanogenic 
output of dairy cows at milking (Garnsworthy et al., 2012), its 
use within a pasture setting, to estimate emissions from non-
lactating ruminants, is limited.
The SF6 technique involves placing a small permeation tube 
containing SF6 inside the rumen, and collection tubes with 
sample lines are used to collect breath samples from the 
animal. This allows the CH4 emission rate to be calculated 
from the known SF6 emission rate and the measured SF6 and 
CH4 concentrations (Johnson et al., 1994). The use of SF6 is 
a labour-intensive method for measuring CH4 as it involves 
daily gas canister collections, some loss of canisters from 
animals and animal handling issues (Table 1). In a comparative 
study by Deighton et al. (2013), it was reported that prolonged 
deployment of SF6 tubes can result in an overestimation of CH4 
emissions from animals if the declining release rate of SF6 from 

permeation tubes over time is not accounted for. Additionally, 
Hristov et al. (2016) found higher variability of results generated 
by the SF6 technique compared to the GF method.
The comparative study by Garnsworthy et al. (2019) found 
that all methods are highly correlated with RC, but levels of 
correlation between non-RC methods are lower. Although 
Jonker et al. (2016) found no difference between average 
emission yields from the SF6 technique, the GF system or from 
those of RC, there are benefits and drawbacks associated 
with all methods. Additionally, correcting CH4 emissions for 
either intake or output can provide a more contextualised 
comparison between individual animals than daily emissions 
alone (outlined in section 1). In order for such calculations to 
be made, individual feeding units for use in housed systems 
and during experiments are vital to determine the total feed 
intake and DMI associated with CH4 output.

Mitigation strategies – farm efficiency
O’Brien & Shalloo (2016) recommended a number of on-farm 
efficiency measures that can aid in reducing CH4 emissions 
from Irish livestock production systems such as extending the 
length of the grazing season, increasing the daily live weight 
gain of beef cattle and lambs, optimising the age and rate of 
calving and lambing, and reducing the age at slaughter. Such 
strategies are complementary and when used in conjunction 
can provide effective CH4 emissions savings. Albeit, these 
measures only confer a benefit on a short-term basis and at 
fixed livestock numbers as increasing the stocking rate will 
increase overall emissions.
Livestock breeding initiatives are an effective farm management 
practice that can aid in CH4 mitigation in a number of ways 
including the following: (1) breeding more productive animals 
can reduce emission intensity (less CH4 emissions per unit 
milk/meat produced), for example, increasing dairy cow 
genetic merit via the EBI and therefore milk production; (2) 
breeding for increased health, fertility and productivity, that 
is, faster-growing animals reduces the age at slaughter and 
thus cumulative CH4 emissions over the animal’s lifespan; 
and (3) selecting for more CH4-efficient traits in animals, 
which will in turn reduce overall CH4 emissions. Regarding 
the latter, there are a number of studies, particularly in New 
Zealand, which highlight the association between the rumen 
microbiome, genotype and phenotype of sheep bred for low 
CH4 output (Xiang et al., 2016; Jonker et al., 2019a; Rowe 
et al., 2020). Goopy et al. (2014) found that certain physical 
traits are associated with sheep selectively bred for low CH4 
output, with such animals having smaller rumens and a shorter 
rumen retention time. In the study by Smith et al. (2021), cattle 
ranked low for residual CH4 output (difference between animals 
predicted, and actual level of CH4 output, based on DMI and 
body weight) had an ∼30% reduction in daily CH4 emissions 
and emissions intensity (g/kg of carcass weight) in comparison 
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to their high residual CH4 counterparts. In addition, the previous 
authors noted feed intake and animal performance were not 
compromised by residual CH4 output ranking. Although it can 
be slow to select for such low-emitting animals, nevertheless, 
such breeding strategies offer a long-term, highly effective 
solution to CH4 abatement (González-Recio et al., 2020).

Mitigation strategies – dietary manipulation
Dietary manipulation involving additives and feed/sward type 
are of fundamental importance in CH4 mitigation strategies 
as emissions are highly correlated to animal feed intake 
and digestibility. Thus, dietary manipulation (i.e. changing 
the amount or proportion of carbohydrate, protein and 
roughage in animal diets) has been previously explored by 
numerous studies and remains an important avenue of further 
investigation.

Feed additives
Historically, halogenic compounds such as bromoform and 
chloroform have been studied for their efficacy as anti-
methanogenic compounds (Bauchop, 1967; Russel & Martin, 
1984). At present, such compounds are mainly used as 
experimental controls (Martinez-Fernandez et al., 2018) due 
to their strong anti-methanogenic albeit toxic and carcinogenic 
qualities. This has also been the case for ionophores such as 
monesin (an antibiotic) which deplete the rumen microbiome 
and therefore methanogenesis. Antibiotics were previously 
fed to animals as growth promotors, particularly in the USA. 
However, since 2006, the use of ionophores is prohibited 
within the EU due to issues with resistance and human health 
concerns (EC, 2005).
Hristov et al. (2013) list the efficacy of various livestock 
dietary additives for reducing CH4 emissions. Their study 
highlights the efficacy of including seaweed in ruminant diets 
to substantially reduce CH4 emissions. It has been found that 
certain seaweeds, particularly red and brown species such 
as Asparagopsis taxiformis (red) and Sargassum flavicans 
(brown), contain compounds with anti-methanogenic 
properties as outlined in Abbott et al. (2020). Bromoform (a 
haloform mostly found in red seaweeds) is known to inhibit 
the enzymes involved in methanogenesis. Various other 
compounds found in seaweeds such as lipids, peptides and 
phlorotannins also play a role in reducing CH4 emissions, 
although the modes of action are less understood (Machado 
et al., 2016; Abbott et al., 2020). Many studies have seen 
significant reductions in CH4 emissions from livestock 
receiving seaweed-based additives at various administration 
rates and concentrations (Machado et al., 2016; Li et al., 
2018; Roque et al., 2019; Kinley et al., 2020; Roque et al., 
2021). However, there are concerns surrounding the potential 
for compounds such as iodine (toxic at high levels) and 
bromoform (carcinogen) to carry through the food chain and 

adversely affect human health (Antaya et al., 2019; Abbott 
et al., 2020). Additionally, importing tropical seaweed species 
such as A. taxiformis risks negatively impacting bioactive 
compounds during transit. There are also monetary costs 
and risk of “pollution swapping” through increased GHG 
emissions associated with transport. The supply of native 
seaweeds (such as temperate brown species) could present 
issues, for example, harvesting wild crops or commercially 
growing seaweeds could have negative environmental 
impacts. To date, seaweed has not been tested in Irish 
pasture-based production systems as an anti-methanogenic 
additive. Overall, further work will be required to understand 
the potential long-term effects of seaweed additives on 
animal productivity and human health.
The addition of fats and oils as CH4 abatement compounds 
to ruminant diets has shown promising results. Lipids can 
reduce CH4 emissions, as they are toxic to and therefore 
reduce methanogens and protozoan numbers within the 
rumen (Beauchemin et al., 2009; Broucek, 2018). Overall, 
results from lipid addition have been variable, but up to 20% 
reduction in emissions have been reported (Beauchemin 
et al., 2020). However, fat addition can negatively affect 
animal feed intake, carbohydrate digestion in the rumen and 
overall milk quality. As regards plant-based oil seeds, Kliem 
et al. (2019) found only linseed-based supplements reduced 
CH4 emissions (across production, yield and emissions 
intensity) when comparing the administration of linseed, palm 
and rapeseed oil products to dairy cows. Similarly, Boland 
et al. (2020) reported an 18% decrease in emissions intensity 
(g CH4/kg milk) from pasture-fed dairy cows receiving linseed 
oil-based concentrates compared with cows receiving stearic 
acid or soy oil-based concentrates.
There are a range of industrially formulated products with the 
potential to reduce methanogenesis such as Mootral (a feed 
additive containing allicin from garlic and citrus extracts) and 
Agolin Ruminant (an essential oil blend). Studies have shown 
positive, albeit variable, effects of both products on reducing 
the amount and rate of enteric CH4 production in both dairy 
and beef cattle (Castro-Montoya et al., 2015; Hargreaves et al., 
2019; Belanche et al., 2020). Agolin Ruminant is an affordable 
solution that has also been shown to improve livestock 
productivity (particularly dairy), which can reduce CH4 emission 
intensity. However, both of these additives have primarily been 
tested as part of total mixed ration (TMR) diets and are in need 
of testing at pasture level.
The synthetic, non-toxic, organic compound 3-nitrooxypropanol 
(3-NOP) has proven to be an effective feed additive for the 
reduction of enteric CH4 emissions (up to 30% reductions), 
without compromising animal performance. 3-NOP inhibits 
methane formation by binding with the enzyme methyl-coenzyme 
M reductase (MCR) (the catalyst for methane formation) during 
the final stages of methanogenesis (Meale et al., 2021). The 
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efficacy of 3-NOP has been assessed in multiple experimental 
trials (Romero-Perez et al., 2015; Jayanegara et al., 2018; 
Martinez-Fernandez et al., 2018; Vyas et al., 2018; McGinn 
et al., 2019; van Gastelen et al., 2020). The recent study of 
Meale et al. (2021) found that a daily oral administration of 
3-NOP to dairy calves from birth to 3 wks post-weaning (14 
wks of age) significantly reduced daily CH4 emissions up until 
at least 1 yr of age. It is likely that this early-life administration 
imprinted on the rumen microbiome, which resulted in lasting 
alterations of the methanogenesis process. Similar reductions 
in CH4 emissions from adult cattle receiving 3-NOP have not 
shown long-term persistence once administration ceased as 
reported in the study on housed beef cattle by Romero-Perez 
et al. (2015). Most 3-NOP studies have been carried out on 
indoor/confined systems; however, beneficial results are harder 
to achieve at pasture level as additives such as 3-NOP need to 
be combined within animal feed or administered directly after 
feeding. Therefore, the development of suitable technologies 
such as slow-release boluses will be required for pasture-
based administration as direct feeding cannot take place 
outside housed periods (Leahy et al., 2020). Additionally, 
consumer behaviour will need to be considered before 3-NOP 
or other synthetic additives are adopted as a mitigation option, 
that is there may be issues surrounding the consumption of 
products that arise from animals fed on synthetic compounds 
(Beauchemin et al., 2020).

Sward type
In Ireland, cattle consume >80% of their DMI requirement 
from grassland forage (O’Brien et al., 2018) with the majority 
of improved pastures consisting of perennial ryegrass (Lolium 
perenne L.) monocultures. In recent years there has been 
increased interest in the use of multi-species swards (a forage 
mixture consisting of two or more species from different 
functional groups) for livestock production. This is due to the 
associated multi-functional benefits which include increased 
agronomic productivity, livestock health benefits, drought 
resilience and environmental benefits (Haughey et al., 2018; 
Grace et al., 2019; Suter et al., 2021). Legumes including 
white clover (Trifolium repens L.) are often used in multi-
species swards and have been shown to contain high tannin 
levels (Woodfield et al., 2019). Recently, Ku-Vera et al. (2020) 
presented the potential of plant secondary metabolites such 
as tannins to modify the rumen microbiome and its function. 
Stewart et al. (2019) also found that hays with high tannin 
content have the potential to reduce enteric CH4 emissions 
from beef cattle. It has been found that tannins can lower 
CH4 emissions through a reduction in fibre digestion (which 
decreases H2 production), and by inhibiting the growth of 
methanogens (Naumann et al., 2017; Jafari et al., 2019). 
However, Patra & Saxena (2010) recommend that the 
proportion of tannin in the diet does not exceed 50 g/kg DMI to 

avoid negative implications on animal performance. It is also 
worth noting the role of pasture management in CH4 mitigation 
with animals grazing on low pre-grazing herbage mass swards 
having reduced CH4 emissions intensity due to increased 
forage digestibility (Wims et al., 2010; Boland et al., 2013).
The benefits of white clover on animal performance could 
potentially impact CH4 emissions intensity, that is, increased 
milk yield/solids (Lee et al., 2004; Egan et al., 2017; Dineen 
et al., 2018) but with the same/lower level of CH4 output. White 
clover also increases the passage rate through the rumen 
which can impact methanogens (Dewhurst et al., 2003; Smith 
et al., 2020a). Research has also been conducted on legume 
species other than white clover; Huyen et al. (2016a,b found 
that Sanfoin (Onobrychis viciifolia, a tanniniferous legume 
forage) inclusion within the diet of dairy cows at 50% silage 
proportion significantly reduced CH4 emissions intensity. 
Aside from emissions intensity, Montoya-Flores et al. (2020) 
found a significant decrease in daily CH4 emissions from cattle 
fed high legume (Leucaena leucocephala) proportion diets.
Herbaceous species Cichorium intybus and Plantago 
lanceolata contain high levels of bioactive compounds, 
in particular condensed tannins (Totty et al., 2013; Peña-
Espinoza et al., 2018; Ineichen et al., 2019). A multi-
species mixture of sorrel (Rumex acetosa), ox-eye daisy 
(Leucanthemum vulgare), yarrow (Achillea millefolium), 
knapweed (Centaurea nigra) and ribwort plantain (Plantago 
lanceolata) fed as haylage resulted in a 10% reduction in 
Ym (SF6 technique) compared with a perennial ryegrass 
monoculture (Hammond et al., 2014). Wilson et al. (2020) 
reported no CH4 mitigation effects when lactating dairy cows 
were fed legume or herb-rich swards, compared to grass-
based swards. Jonker et al. (2019b) reported elevated Ym 
for cows fed a diverse sward (containing ryegrasses, [both 
Lolium perenne and Lolium multiflorum], white clover, lucerne, 
chicory and plantain) compared to a ryegrass (L. perenne and 
L. multiflorum) and white clover mixture. Similarly, Loza et al. 
(2021) found that CH4 emissions per kg energy corrected milk 
produced (emissions intensity) to be 11% higher from dairy 
cows grazing diverse mixtures compared to grass-clover 
swards. The aforementioned studies present some contrasting 
results. However, verifying the effect of multi-species swards 
and different types of species at grazing will be important to 
determining solutions to CH4 abatement in Ireland.

Methodology

We undertook a comprehensive literature survey of recent 
(2016–2021) research publications that focus on enteric 
CH4 emissions and rumen microbiome function. This was 
performed through online searches of relevant databases 
(SCOPUS and Scholar) using specific key words (“rumen” 
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AND “livestock” OR “methane” OR “microbiome”). The 
search was limited to research articles from Irish and 
Northern Irish research-performing organisations (RPOs). 
In addition, further relevant published scientific articles were 
identified from cited references in relevant review or meta-
analysis papers including Waters et al. (2020). The relevant 
papers were added to an excel sheet and the methodology 
sections were analysed to determine the equipment and 
methodology used. Contact was then made with the 
corresponding authors of relevant publications to identify 
current projects and facilities. The proposals of the main Irish 
CH4 research projects were also evaluated to determine the 
facilities and equipment available for use. Site visits to the 
relevant research centres took place where CH4 projects, 
research infrastructure and facilities were documented. The 
current Irish bovine and ovine GHG inventory methodologies 
were reviewed according to the United Nations Framework 
Convention on Climate Change (UNFCCC, 2021) Irish 
National Inventory Reports.

Results

Global warming potential and inventory
The current metric used to assess the impact of individual 
gases towards climate change is termed the GWP of CH4 which 
is “GWP100”. This method equates one GHG unit to its CO2 
equivalent, averaged over a 100-yr time horizon. This results 
in a GWP of 28 in the case of CH4 (IPCC, 2014). However, 
this method fails to account for the short-lived atmospheric 
persistence of CH4 (9.1 yrs) relative to other GHGs such as 
N2O, which persists in the atmosphere for more than 100 yrs 
and CO2, which has a residence time of several centuries. This 
means that whilst CH4 has a strong radiative forcing impact 
when first emitted, this warming impact diminishes as CH4 
oxidises to CO2 and H2O. Therefore, there are concerns that 
the GWP100 overestimates the contribution of CH4 to long-
term radiative forcing (Allen et al., 2016; Allen et al., 2018).
In terms of CH4 inventory accounting, sheep are currently 
reported using Tier 1 methodologies in the Irish National 
Inventory (UNFCCC, 2021). However, there are data 
available on Irish sheep populations, finishing ages, 
concentrate usage, housing periods and manure storage 
systems which could potentially be utilised in the progression 
to Tier 2 methodologies (O’Brien & Shalloo, 2016). Ireland 
currently uses Tier 2 inventory estimation for cattle, which 
disaggregates enteric and manure CH4 emissions from the 
bovine herd between numerous categories as described in 
O’Mara (2006). The principal subdivisions are made between 
dairy and non-dairy (beef) animals. Dairy is subsequently 
divided in terms of calving date and region with a separate 
category for dairy heifers. The non-dairy herd is partitioned 

in terms of suckler cows (subdivided as per dairy cows) 
and heifers, with bovines for finishing classified based on 
age and gender. Future developments for reporting of 
CH4 emissions and incorporating mitigation may require a 
Tier 3 or modelling approach. Dynamic models based on 
the mathematical modelling of rumen processes have the 
potential to incorporate a myriad of feed strategies such as 
carbohydrate, protein, fat and fibre metabolism. Such models 
have been simulated in detail and incorporated into US, 
Dutch and French inventories (Kebreab et al., 2008; Bannink 
et al., 2011; Eugène et al., 2019). These models are complex 
and must describe both the dynamics and interactions 
between various substrate pools and microbial pools and 
the consequences for the end-products of fermentation. 
Turnover rates between different pools are generally based 
on enzyme kinetics and degradation characteristics of 
different feed types.
As outlined by O’Brien & Shalloo (2016), there is potential to 
develop Tier 3 inventories for cattle. Data gathered and held 
by the CSO, Teagasc NFS, Bord Bia and the animal feed 
industry could potentially be integrated into the development 
of more accurate, Tier 3 CH4 emission factors for cattle. There 
is already an extensive body of work on the variation in forage 
quality on production (Hart et al., 2009; Muñoz et al., 2016). 
Therefore, the national data required for inputting into a Tier 3 
system are already available.

Irish enteric methane research to date
Over the last 5 yrs (2016–2021), 14% of Irish agricultural 
GHG research publications have been based on enteric CH4 
emissions (Figure 1). In total, 43 research papers have been 
published on studies using methodologies such as RCs, SF6 
(Images 2 and 3), RUSITEC in vitro rumen simulation and 
16S rRNA amplicon sequencing (Table 2). Work carried out 
in Ireland, which furthers the understanding of the rumen 
microbiome, include the study by Kumar et al. (2018) and 
reviews by Huws et al. (2018) and Leahy et al. (2019). A 
number of studies have investigated strategies for decoupling 
enteric CH4 emissions from livestock production. The studies 
by Popova et al. (2017), Smith et al. (2020b) and Boland 
et al. (2020) examine the effects of dietary supplementations, 
that is, linseed oil and industrial by-products. Other dietary 
manipulations strategies including sward composition, sward 
N application, concentrate type and protein content have 
been assessed (Hynes et al., 2016; McDonnell et al., 2016; 
Zhao et al., 2016; Günal et al., 2019; O’Connor et al., 2019; 
Ferris et al., 2020; Smith et al., 2020a). There have been a 
number of studies that focused on the genetic selection for 
production efficiency and low CH4 output animals. The traits 
investigated include phenotype, age and breeding index of 
cattle (Morrison et al., 2017; Rubino et al., 2017; Quinton 
et al., 2018; Ferris et al., 2020). Additionally, there has also 
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Image 2. SF6 equipment on grazing sheep, Teagasc, Athenry, Co. Galway.

Nitrous oxide
32%

Ammonia
9%

Methane (enteric)
14%

Methane (non-
enteric)

22%

SOC
20%

Forest carbon
3%

Figure 1. Research publications from Irish and Northern Irish research-performing organisations (2016–2021) that focus on agricultural greenhouse 
gases (GHGs): nitrous oxide, ammonia (pollutant and indirect GHG), carbon (soil organic carbon (SOC) and forest C) and methane (enteric 
and non-enteric).
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been Irish involvement with international enteric CH4 database 
and model development (Niu et al., 2018).

Current research projects in Ireland
There are currently a number of projects focusing on CH4 
abatement underway in Ireland (Table 3). Both EU-funded 
projects, RumenPredict (ERA-GAS) and MASTER (Horizon 
2020 – European Commission), have members of Teagasc, 
University College Dublin (UCD) and the Irish Cattle Breeding 
Federation (ICBF) working in collaboration to better understand 
the link between the rumen microbiome composition and CH4 
output. There are a number of other ERA-GAS-funded projects 
including SeaSolutions, a Teagasc co-ordinated project which 
aims to determine the potential of seaweeds to reduce enteric 
CH4 emissions from sheep, beef and dairy cattle, METHlab 
which focuses on the use of lactic acid bacteria as an 
approach to reduce CH4 emissions from ruminant livestock and 
GrassToGas which aims to identify individual animal, feed and 

environmental attributes associated with feed and water intake 
efficiency for pasture-based sheep production systems using 
portable accumulation chambers (Image 1). The Teagasc-led 
Department of Agriculture, Food and the Marine (DAFM)-
funded Meth-Abate project seeks to develop new technologies 
to reduce enteric CH4 emissions from ruminants and emissions 
from stored manure and slurry. This project is focused on 
investigating the potential of feed and slurry additives as CH4 
mitigation solutions. Meth-Abate has research partners from 
National University of Ireland, Galway (NUIG), Teagasc, Agri-
Food and Biosciences Institute (AFBI), Queens University as 
well as a number of industry stakeholders. Greenbreed (DAFM 
funded) is a collaborative project between UCD, Teagasc and 
the ICBF which aims to determine strategies for the breeding of 
more CH4-efficient animals. There are a number of GF systems 
in place at the confinement facilities at the ICBF used to carry 
out this research (Images 4 and 5). VistaMilk is an Science 
Foundation Ireland (SFI) research centre, with the aim to 
“facilitate the development and deployment of new knowledge, 
new technologies and new decision support tools to maximise 
the efficiency and effectiveness of the entire dairy production 
chain”. VistaMilk funds a number of projects investigating feed 
additives at pasture in dairy cattle at Teagasc, Moorepark 
(Image 6). APC microbiome is also an SFI-funded centre 
which has links with CH4 abatement projects such as METH-
lab. SMARTSWARD (DAFM funded) is a collaborative project 
between UCD, TUD and AFBI and is investigating the impact 
of multi-species swards on enteric CH4 emissions of beef cattle 
and lactating dairy cows using the SF6 technique. The current 
(as of 2021) infrastructure available in Ireland to conduct CH4 
research is listed in Table 2.

Discussion

Irish livestock systems are primarily grass-based owing to the 
temperate climate that promotes grass growth (O’Donovan 

Image 3. SF6 equipment on grazing dairy cattle, Teagasc, 
Moorepark, Co. Cork.

Table 2: Irish methane research infrastructure as of 2021: a summary of current research projects in Ireland that focus on enteric methane

Research centre  Facilities

Teagasc Grange  5 × GreenFeed (GF) systems, 4 × Rusitec in vitro simulators, SF6 equipment, digestibility crates for measurements

Irish Cattle Breeding Federation Tully  10 × GF systems (indoor), cattle digestibility units

Teagasc Moorepark  4 × GF (pasture), SF6 equipment

Teagasc Athenry  Portable accumulation chambers for sheep, SF6 equipment for sheep

UCD  4 × GF (pasture/indoor), SF6 equipment, 4 × Rusitec in vitro simulators, digestibility crates for measurements 

(dairy and sheep)

AFBI  2 × large respiration chambers, 6 × medium respiration chambers, 3 × GF systems, SF6 equipment, dairy cow 

digestibility units, digestibility crates for measurements

Queens University Belfast  Rumen microbiology laboratory facilities
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et al., 2021). There are also lower economic and environmental 
costs associated with grass-based systems relative to 
confinement/feedlot systems (O’Brien et al., 2012; O’Brien 
et al., 2014; Herron et al., 2021). Thus, investigating how 
different sward compositions impact CH4 emissions/emissions 
intensity from grazing livestock is certainly an avenue worth 
further investigation. Some research has shown that multi-
species swards can decrease daily CH4 emissions/head and/
or directly lower CH4 emissions intensity through the improved 
animal performance achieved with grazing multi-species 
swards (e.g. Hammond et al., 2014). Although, some research 
does not support these findings, e.g. the study of Loza et al., 
2021. Nonetheless, legume-based and multi-species swards 
require less N fertiliser inputs to maintain yield production and 
have lower associated N2O emissions and emissions intensity 

than conventional L. perenne monocultures (Cummins et al., 
2021). Thus, there is the potential that more diverse swards 
could give dual GHG abatement.
Anti-methanogenic feed additives could potentially have 
a role in Irish CH4 abatement strategies. However, issues 
with social acceptance (Beauchemin et al., 2020), cost and 
on-farm delivery should be taken into account. Due to the 
constant turnover of the ruminal contents (van Soest, 2018), 
the efficacy of additives may depend on their residency time in 
the rumen/frequency of intake. It is easier to deliver additives 
as part of a TMR diet in housed systems where additives 
can be supplemented at feeding. This is harder to achieve at 
pasture level where grazed forage makes up the majority of 
the animals’ diet. To overcome this, early-life supplementation 
strategies with additives such as 3-NOP may offer an effective 

Table 3: A summary of current research projects in Ireland that focus on enteric methane

Project title  Coordinator  Funder  Duration  Collaborators

Rumenpredict  Prof Sharon Huws  ERA-GAS  3 yrs  QUB, Teagasc, ICBF, UCD, Natural Resources Institute 

Finland, Agresearch NZ, Swedish University of Agricultural 

Sciences, Wageningen University, INRA, France

MASTER  Prof Paul Cotter  EU Horizon 2020  4 yrs  Teagasc, ICBF

Seasolutions  Dr Maria Hayes  ERA-GAS  3 yrs  Teagasc, IT Sligo, QUB, AFBI, Norwegian Institute 

of Bioeconomy Research, Agriculture and Agri-Food 

Canada, Department of Agricultural Sciences Sweden, 

Friedrich-Loeffler-Institut Germany, SINTEF Norway

Methlab  Prof Catherine 

Stanton

 ERA-gas  3 yrs  Teagasc, UCC, Wageningen University, INRA, France, 

Agresearch NZ, SACCO Italy

Meth-Abate  Prof Sinead Waters  DAFM/DAERA  4 yrs  Teagasc, NUIG, AFBI, Queens, Industry

Greenbreed  Prof Donagh Berry  DAFM  4 yrs  Teagasc, ICBF, UCD, WIT, CIT

Grasstogas  Joanne Conington  ERA-GAS  3 yrs  Sheep Ireland, Teagasc, INRA France, National 

Agriculture Research Institute Uruguay,

Norwegian University of Life Sciences, AgResearch NZ, 

International Center for Livestock Research and Training 

Turkey

Greengrowth  Dr Fiona McGovern  Teagasc  4 yrs  Teagasc, UCD

SMARTSWARD  Prof Tommy Boland  DAFM/DAERA  4 yrs  UCD, Technological University of Dublin, AFBI

VistaMilk SFI Research 

Centre

 Prof Donagh Berry  Science Foundation Ireland 

(SFI) and DAFM, national and 

international industry funding

 Ongoing  Teagasc, UCC, UCD, WIT, multiple national and 

international industry collaborators

Water-based delivery 

of rumen modifiers 

to enhance the 

sustainability of ruminant 

production systems

 Prof Tommy Boland  Enterprise Ireland  2 yrs  UCD
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Image 4. A beef steer visiting a GreenFeed™ system at the ICBF 
facilities, Tully, Co. Kildare.

Image 5. Teagasc GreenFeed™ systems at the ICBF facilities, Tully, 
Co. Kildare.

solution as recently established by Meale et al. (2021). The 
technological development of slow-release boluses could 
also provide an option for pasture-based delivery as is often 
the case with mineral supplementations (Grace & Knowles, 

2012; Aliarabi et al., 2019). The effects of additives on animal 
productivity and welfare will need to be evaluated alongside 
farm-level cost-effectiveness (i.e. life cycle assessments) to 
determine the most effective and practical mitigation strategy 
at farm level.
Selecting for low CH4 emissions in livestock breeding 
programmes, that is, including animal CH4 output in breeding 
indexes, is a cumulative, permanent and effective CH4 
abatement strategy (González-Recio et al., 2020). In addition, 
some authors have advocated the benefits of selecting more 
feed-efficient ruminants as a mitigation strategy (Basarab 
et al., 2013). Residual CH4 output is a useful phenotype 
for use in selection processes, as it is strongly related to 
daily CH4 output but also independent of body weight and 
feed intake (Bird-Gardiner et al., 2017). The work, currently 
ongoing with Teagasc and the ICBF, will contribute to the 
development of breeding values for low CH4 output for both 
beef and dairy sires as presented in Smith et al. (2021). The 
benefits of selecting for lower CH4 output animals would 
be further complemented with CH4-inhibiting additives and 
grazing on multi-species swards. However, breeding indexes 
will require validation at pasture as there is the possibility of 
a genetic × feed type effect. Therefore, it is vital that further 
resources are allocated to continuing and expanding on this 
research.
A major increase in CH4 research capacity and output is 
required. For example, between 2016 and 2021, only 14% 
of agricultural GHG research publications in Ireland were 
focused on enteric CH4 (Figure 1). Therefore, research 
outputs seem to be disjointed from research requirements 
given that enteric CH4 emissions from livestock production 
constitute 57% of Irish agricultural GHG emissions. Thus, 
considerable investment towards research infrastructure and 
facilities is urgently required if the Irish CH4 research capacity 
is to expand and progress. Regarding specific infrastructures 
(Table 2), there are currently no RCs in use in the Republic 
of Ireland. These will be required as RCs are a fundamentally 
important methodology for measuring CH4 emissions and 
for validating other CH4 measurement methodologies. More 
individual feeding and feed intake recording systems would 
be useful to assess further the relationship between genotype, 
feed use efficiency and CH4 emissions from a large cohort 
of animals for breeding purposes. There is also a need for 
more accurate methodologies for measuring feed intake from 
grazing animals and further investment in pasture-based GF 
systems for large-scale field trials. Additionally, there is a need 
to investigate and further develop upcoming technologies for 
measuring CH4 emissions (Neethirajan, 2020) for application 
to grazing systems. Research would ideally take place at a 
multi-institutional level and capture CH4 emissions from dairy, 
beef and sheep production systems (both intensive and 
extensive) across Ireland.
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In order to improve and refine the national enteric CH4 
inventory, the working data (i.e. yearly livestock numbers from 
the CSO) should be combined with existing research output to 
develop a dynamic CH4 model for inclusion within the national 
inventory. This would ideally be performed for sheep, beef and 
dairy cattle aiming to progress sheep inventory from Tier 1 to 
Tier 2 (with the aim of further progression to Tier 3) and cattle 
from Tier 2 to Tier 3. Further emission factor and inventory 
development will provide increased accuracy in Ireland’s 
GHG emissions estimations and therefore mitigation efforts. 
An accurate inventory accounting is essential for determining 
the efficacy of mitigation efforts and meeting carbon neutrality 
in Ireland by 2050.
Thus in summary, research is required in the following areas: 
(1) on-pasture deliverance of anti-methanogenic substances 
in the form of additives, for example, 3-NOP, oilseeds, 
seaweeds; (2) the effects of sward type on CH4 emissions 
and emissions intensity at pasture level including the effects 
of different species; and (3) breeding efficiency: selecting 
for low CH4-emitting genetics while retaining production and 

profitability. The capabilities and limitations of all mitigation 
options should be considered during the development of 
a national CH4 abatement strategy and a holistic approach 
should be taken rather than a “silver bullet” solution. The 
meeting of GHG commitments will be dependent on policy 
drivers and technology adaptation. Knowledge transfer and 
advisory will also have key roles with the on-farm delivery of 
abatement strategies.
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