89 research outputs found

    Pancreas deficiency modifies bone development in the ovine fetus near term.

    Get PDF
    Hormones have an important role in the regulation of fetal growth and development, especially in response to nutrient availability in utero. Using micro-CT and an electromagnetic three-point bend test, this study examined the effect of pancreas removal at 0.8 fraction of gestation on the developing bone structure and mechanical strength in fetal sheep. When fetuses were studied at 10 and 25 days after surgery, pancreatectomy caused hypoinsulinaemia, hyperglycaemia and growth retardation which was associated with low plasma concentrations of leptin and a marker of osteoclast activity and collagen degradation. In pancreatectomized fetuses compared to control fetuses, limb lengths were shorter, and trabecular (Tb) bone in the metatarsi showed greater bone volume fraction, Tb thickness, degree of anisotropy and porosity, and lower fractional bone surface area and Tb spacing. Mechanical strength testing showed that pancreas deficiency was associated with increased stiffness and a greater maximal weight load at fracture in a subset of fetuses studied near term. Overall, pancreas deficiency in utero slowed the growth of the fetal skeleton and adapted the developing bone to generate a more compact and connected structure. Maintenance of bone strength in growth-retarded limbs is especially important in a precocial species in preparation for skeletal loading and locomotion at birth

    In vivo delivery of VEGF RNA and protein to increase osteogenesis and intraosseous angiogenesis

    Get PDF
    Deficient bone vasculature is a key component in pathological conditions ranging from developmental skeletal abnormalities to impaired bone repair. Vascularisation is dependent upon vascular endothelial growth factor (VEGF), which drives both angiogenesis and osteogenesis. The aim of this study was to examine the efcacy of blood vessel and bone formation following transfection with VEGF RNA or delivery of recombinant human VEGF165 protein (rhVEGF165) across in vitro and in vivo model systems. To quantify blood vessels within bone, an innovative approach was developed using high-resolution X-ray computed tomography (XCT) to generate quantifable three-dimensional reconstructions. Application of rhVEGF165 enhanced osteogenesis, as evidenced by increased human osteoblast-like MG-63 cell proliferation in vitro and calvarial bone thickness following in vivo administration. In contrast, transfection with VEGF RNA triggered angiogenic efects by promoting VEGF protein secretion from MG-63VEGF165 cells in vitro, which resulted in signifcantly increased angiogenesis in the chorioallantoic (CAM) assay in ovo. Furthermore, direct transfection of bone with VEGF RNA in vivo increased intraosseous vascular branching. This study demonstrates the importance of continuous supply as opposed to a single high dose of VEGF on angiogenesis and osteogenesis and, illustrates the potential of XCT in delineating in 3D, blood vessel connectivity in bone

    The chorioallantoic membrane (CAM) assay for the study of human bone regeneration: a refinement animal model for tissue engineering.

    No full text
    Biomaterial development for tissue engineering applications is rapidly increasing but necessitates efficacy and safety testing prior to clinical application. Current in vitro and in vivo models hold a number of limitations, including expense, lack of correlation between animal models and human outcomes and the need to perform invasive procedures on animals; hence requiring new predictive screening methods. In the present study we tested the hypothesis that the chick embryo chorioallantoic membrane (CAM) can be used as a bioreactor to culture and study the regeneration of human living bone. We extracted bone cylinders from human femoral heads, simulated an injury using a drill-hole defect, and implanted the bone on CAM or in vitro control-culture. Micro-computed tomography (?CT) was used to quantify the magnitude and location of bone volume changes followed by histological analyses to assess bone repair. CAM blood vessels were observed to infiltrate the human bone cylinder and maintain human cell viability. Histological evaluation revealed extensive extracellular matrix deposition in proximity to endochondral condensations (Sox9+) on the CAM-implanted bone cylinders, correlating with a significant increase in bone volume by ?CT analysis (p?<?0.01). This human-avian system offers a simple refinement model for animal research and a step towards a humanized in vivo model for tissue engineering

    Genetically-programmed, mesenchymal stromal cell-laden & mechanically strong 3D bioprinted scaffolds for bone repair

    Get PDF
    Additive manufacturing processes used to create regenerative bone tissue engineered implants are not biocompatible, thereby restricting direct use with stem cells and usually require cell seeding post-fabrication. Combined delivery of stem cells with the controlled release of osteogenic factors, within a mechanically-strong biomaterial combined during manufacturing would replace injectable defect fillers (cements) and allow personalized implants to be rapidly prototyped by 3D bioprinting.Through the use of direct genetic programming via the sustained release of an exogenously delivered transcription factor RUNX2 (delivered as recombinant GET-RUNX2 protein) encapsulated in PLGA microparticles (MPs), we demonstrate that human mesenchymal stromal (stem) cells (hMSCs) can be directly fabricated into a thermo-sintered 3D bioprintable material and achieve effective osteogenic differentiation. Importantly we observed osteogenic programming of gene expression by released GET-RUNX2 (8.2-, 3.3- and 3.9-fold increases in OSX, RUNX2 and OPN expression, respectively) and calcification (von Kossa staining) in our scaffolds. The developed biodegradable PLGA/PEG paste formulation augments high-density bone development in a defect model (~2.4-fold increase in high density bone volume) and can be used to rapidly prototype clinically-sized hMSC-laden implants within minutes using mild, cytocompatible extrusion bioprinting.The ability to create mechanically strong 'cancellous bone-like’ printable implants for tissue repair that contain stem cells and controlled-release of programming factors is innovative, and will facilitate the development of novel localized delivery approaches to direct cellular behaviour for many regenerative medicine applications including those for personalized bone repair

    Intradermal Infections of Mice by Low Numbers of African Trypanosomes Are Controlled by Innate Resistance but Enhance Susceptibility to Reinfection

    Get PDF
    Antibodies are required to control blood-stage forms of African trypanosomes in humans and animals. Here, we report that intradermal infections by low numbers of African trypanosomes are controlled by innate resistance but prime the adaptive immune response to increase susceptibility to a subsequent challenge. Mice were found 100 times more resistant to intradermal infections by Trypanosoma congolense or Trypanosoma brucei than to intraperitoneal infections. B cell–deficient and RAG2−/− mice are as resistant as wild-type mice to intradermal infections, whereas inducible nitric oxide synthase (iNOS)−/− mice and wild-type mice treated with antibody to tumor necrosis factor (TNF) α are more susceptible. We conclude that primary intradermal infections with low numbers of parasites are controlled by innate defense mediated by induced nitric oxide (NO). CD1d−/− and major histocompatibility complex (MHC) class II−/− mice are more resistant than wild-type mice to primary intradermal infections. Trypanosome-specific spleen cells, as shown by cytokine production, are primed as early as 24 h after intradermal infection. Infecting mice intradermally with low numbers of parasites, or injecting them intradermally with a trypanosomal lysate, makes mice more susceptible to an intradermal challenge. We suggest that intradermal infections with low numbers of trypanosomes or injections with trypanosomal lysates prime the adaptive immune system to suppress protective immunity to an intradermal challenge

    Imports and isotopes: a modern baseline study for interpreting Iron Age and Roman trade in fallow deer antlers

    Get PDF
    The European Fallow deer (Dama dama dama) became extinct in the British Isles and most of continental Europe at the time of the Last Glacial Maximum, with the species becoming restricted to an Anatolian refugium (Masseti et al. 2008). Human-mediated reintroductions resulted in fallow populations in Rhodes, Sicily, Mallorca, Iberia and other parts of western Europe (Sykes et al. 2013). Eventually, the species was brought to Britain by the Romans during the 1st century AD, with a breeding population being established at Fishbourne Roman Palace (Sykes et al. 2011). The human influence on the present-day distribution of the species makes it particularly interesting from a zooarchaeological perspective. This paper describes my MSc research, as part of the AHRC-funded project Dama International: Fallow Deer and European Society 6000 BC–AD 1600, looking at antlers from Iron Age and Roman sites in Britain for evidence of trade in body parts and whether this can be elucidated by a parallel stable isotope study of modern fallow antlers of known provenance

    Molecular biology of papillomaviruses in pre-malignant cervical infection

    No full text
    The samples analysed were cervical scrapes taken at a colposcopy clinic. HPVs were detected in 90% of specimens with low grade lesions (CIN 1) and 100% of high grade lesions (CIN3). HPV types commonly found in cancer (high risk types 16, 18, 31, and 45) were detected in 80% of specimens with CIN 3, but only 40% of specimens with CIN 1). Moderate risk HPV types (including types 33, 35, 39, and 56) were detected in 19% of CIN 3 and 34% of CIN 1 and low risk HPV types (e.g. 6, 11, 42, and 66) were detected in 11% of CIN 1, but less than 1% of samples with CIN 3. No positive predictive value was found using viral load as an indicator of disease severity. Cervical infection with herpesviruses was found more often in women with progressing CIN, but there was no correlation with cervical cytokine or chemokine production and grade of CIN. However, mixed HPV infections increased in incidence with increasing lesion severity.The most commonly isolated HPV type in all grades of CIN was HPV-16. Transcripts coding for the oncogenic proteins, E6 and E7, were more commonly detected in high grade lesion severity.The production of transcripts for host proteins implicated in uncontrolled cellular replication was investigated. Survivin transcripts were present in 30% of CIN samples. Interestingly, samples not expressing survivin transcripts contained higher levels of HPV-16 E6 transcripts. A polymorphism in intron 6 of the p53 gene was linked to the presence of CIN. However, this polymorphism only accounted for susceptibility to CIN in a minor group of women.</p
    corecore