463 research outputs found

    Trop-2 inhibits prostate cancer cell adhesion to fibronectin through the β1 integrin-RACK1 axis.

    Get PDF
    Trop-2 is a transmembrane glycoprotein upregulated in several human carcinomas, including prostate cancer (PrCa). Trop-2 has been suggested to regulate cell-cell adhesion, given its high homology with the other member of the Trop family, Trop-1/EpCAM, and its ability to bind the tight junction proteins claudin-1 and claudin-7. However, a role for Trop-2 in cell adhesion to the extracellular matrix has never been postulated. Here, we show for the first time that Trop-2 expression in PrCa cells correlates with their aggressiveness. Using either shRNA-mediated silencing of Trop-2 in cells that endogenously express it, or ectopic expression of Trop-2 in cells that do not express it, we show that Trop-2 inhibits PrCa cell adhesion to fibronectin (FN). In contrast, expression of another transmembrane receptor, α(v) β(5) integrin, does not affect cell adhesion to this ligand. We find that Trop-2 does not modulate either protein or activation levels of the prominent FN receptors, β(1) integrins, but acts through increasing β(1) association with the adaptor molecule RACK1 and redistribution of RACK1 to the cell membrane. As a result of Trop-2 expression, we also observe activation of Src and FAK, known to occur upon β(1) -RACK1 interaction. These enhanced Src and FAK activities are not mediated by changes in either the activity of IGF-IR, which is known to bind RACK1, or IGF-IR\u27s ability to associate with β(1) integrins. In summary, our data demonstrate that the transmembrane receptor Trop-2 is a regulator of PrCa cell adhesion to FN through activation of the β(1) integrin-RACK1-FAK-Src signaling axis

    Exosome-mediated Transfer of αvβ3 Integrin from Tumorigenic to Nontumorigenic Cells Promotes a Migratory Phenotype.

    Get PDF
    The αvβ3 integrin is known to be highly upregulated during cancer progression and promotes a migratory and metastatic phenotype in many types of tumors. We hypothesized that the αvβ3 integrin is transferred through exosomes and, upon transfer, has the ability to support functional aberrations in recipient cells. Here, for the first time, it is demonstrated that αvβ3 is present in exosomes released from metastatic PC3 and CWR22Pc prostate cancer cells. Exosomal β3 is transferred as a protein from donor to nontumorigenic and tumorigenic cells as β3 protein or mRNA levels remain unaffected upon transcription or translation inhibition in recipient cells. Furthermore, it is shown that upon exosome uptake, de novo expression of an αvβ3 increases adhesion and migration of recipient cells on an αvβ3 ligand, vitronectin. To evaluate the relevance of these findings, exosomes were purified from the blood of TRAMP mice carrying tumors where the expression of αvβ3 is found higher than in exosomes from wild-type mice. In addition, it is demonstrated that αvβ3 is coexpressed with synaptophysin, a biomarker for aggressive neuroendocrine prostate cancer. IMPLICATIONS: Overall this study reveals that the αvβ3 integrin is transferred from tumorigenic to nontumorigenic cells via exosomes, and its de novo expression in recipient cells promotes cell migration on its ligand. The increased expression of αvβ3 in exosomes from mice bearing tumors points to its clinical relevance and potential use as a biomarker. Mol Cancer Res; 14(11); 1136-46. ©2016 AACR

    Integrins in prostate cancer progression

    Get PDF
    Integrins, which are transmembrane receptors for extracellular matrix proteins, play a key role in cell survival, proliferation, migration, gene expression, and activation of growth factor receptors. Their functions and expression are deregulated in several types of cancer, including prostate cancer. In this article, we review the role of integrins in prostate cancer progression and their potential as therapeutic targets

    Regulation of β1C and β1A Integrin Expression in Prostate Carcinoma Cells

    Get PDF
    beta(1C) and beta(1A) integrins are two splice variants of the human beta(1) integrin subfamily that act as an inhibitor and a stimulator of cell proliferation, respectively. In neoplastic prostate epithelium, both these variants are down-regulated at the mRNA level, but only beta(1C) protein levels are reduced. We used an experimental model consisting of PNT1A, a normal immortalized prostate cell line, and LNCaP and PC-3, two prostate carcinoma cell lines, to investigate both the transcription/post-transcription and translation/post-translation processes of beta(1C) and beta(1A). Transcriptional regulation played the key role for the reduction in beta(1C) and beta(1A) mRNA expression in cancer cells, as beta(1C) and beta(1A) mRNA half-lives were comparable in normal and cancer cells. beta(1C) translation rate decreased in cancer cells in agreement with the decrease in mRNA levels, whereas beta(1A) translation rate increased more than 2-fold, despite the reduction in mRNA levels. Both beta(1C) and beta(1A) proteins were degraded more rapidly in cancer than in normal cells, and pulse-chase experiments showed that intermediates and/or rates of beta(1C) and beta(1A) protein maturation differ in cancer versus normal cells. Inhibition of either calpain- or lysosomal-mediated proteolysis increased both beta(1C) and beta(1A) protein levels, the former in normal but not in cancer cells and the latter in both cell types, albeit at a higher extent in cancer than in normal cells. Interestingly, inhibition of the ubiquitin proteolytic pathway increased expression of ubiquitinated beta(1C) protein without affecting beta(1A) protein levels in cancer cells. These results show that transcriptional, translational, and post-translational processes, the last involving the ubiquitin proteolytic pathway, contribute to the selective loss of beta(1C) integrin, a very efficient inhibitor of cell proliferation, in prostate malignant transformation

    Molecular Targets for Radiation Oncology in Prostate Cancer

    Get PDF
    Recent selected developments of the molecular science of prostate cancer (PrCa) biology and radiation oncology are reviewed. We present potential targets for molecular integration treatment strategies with radiation therapy (RT), and highlight potential strategies for molecular treatment in combination with RT for patient care. We provide a synopsis of the information to date regarding molecular biology of PrCa, and potential integrated research strategy for improved treatment of PrCa. Many patients with early-stage disease at presentation can be treated effectively with androgen ablation treatment, surgery, or RT. However, a significant portion of men are diagnosed with advanced stage/high-risk disease and these patients progress despite curative therapeutic intervention. Unfortunately, management options for these patients are limited and are not always successful including treatment for hormone refractory disease. In this review, we focus on molecules of extracellular matrix component, apoptosis, androgen receptor, RUNX, and DNA methylation. Expanding our knowledge of the molecular biology of PrCa will permit the development of novel treatment strategies integrated with RT to improve patient outcom

    Syntaphilin controls a mitochondrial rheostat for proliferation-motility decisions in cancer.

    Get PDF
    Tumors adapt to an unfavorable microenvironment by controlling the balance between cell proliferation and cell motility, but the regulators of this process are largely unknown. Here, we show that an alternatively spliced isoform of syntaphilin (SNPH), a cytoskeletal regulator of mitochondrial movements in neurons, is directed to mitochondria of tumor cells. Mitochondrial SNPH buffers oxidative stress and maintains complex II-dependent bioenergetics, sustaining local tumor growth while restricting mitochondrial redistribution to the cortical cytoskeleton and tumor cell motility. Conversely, introduction of stress stimuli to the microenvironment, including hypoxia, acutely lowered SNPH levels, resulting in bioenergetics defects and increased superoxide production. In turn, this suppressed tumor cell proliferation but increased tumor cell invasion via greater mitochondrial trafficking to the cortical cytoskeleton. Loss of SNPH or expression of an SNPH mutant lacking the mitochondrial localization sequence resulted in increased metastatic dissemination in xenograft or syngeneic tumor models in vivo. Accordingly, tumor cells that acquired the ability to metastasize in vivo constitutively downregulated SNPH and exhibited higher oxidative stress, reduced cell proliferation, and increased cell motility. Therefore, SNPH is a stress-regulated mitochondrial switch of the cell proliferation-motility balance in cancer, and its pathway may represent a therapeutic target

    Syntaphilin Ubiquitination Regulates Mitochondrial Dynamics and Tumor Cell Movements.

    Get PDF
    Syntaphilin (SNPH) inhibits the movement of mitochondria in tumor cells, preventing their accumulation at the cortical cytoskeleton and limiting the bioenergetics of cell motility and invasion. Although this may suppress metastasis, the regulation of the SNPH pathway is not well understood. Using a global proteomics screen, we show that SNPH associates with multiple regulators of ubiquitin-dependent responses and is ubiquitinated by the E3 ligase CHIP (or STUB1) on Lys111 and Lys153 in the microtubule-binding domain. SNPH ubiquitination did not result in protein degradation, but instead anchored SNPH on tubulin to inhibit mitochondrial motility and cycles of organelle fusion and fission, that is dynamics. Expression of ubiquitination-defective SNPH mutant Lys111!Arg or Lys153!Arg increased the speed and distance traveled by mitochondria, repositioned mitochondria to the cortical cytoskeleton, and supported heightened tumor chemotaxis, invasion, and metastasis in vivo. Interference with SNPH ubiquitination activated mitochondrial dynamics, resulting in increased recruitment of the fission regulator dynamin-related protein-1 (Drp1) to mitochondria and Drp1-dependent tumor cell motility. These data uncover nondegradative ubiquitination of SNPH as a key regulator of mitochondrial trafficking and tumor cell motility and invasion. In this way, SNPH may function as a unique, ubiquitination-regulated suppressor of metastasis

    Disparate effects of adhesion and degranulation of platelets on myocardial and coronary function in postischaemic hearts

    Get PDF
    Beside the major effect of acute thrombus formation, little is known about the interaction of platelets with the coronary endothelium in an ischaemia–reperfusion situation. The present study was designed to investigate, separately, the consequences of platelet adhesion and degranulation during myocardial reperfusion. Methods: Isolated guinea pig hearts perfused with Krebs–Henseleit buffer and performing pressure–volume work were used. We infringed myocardial function by imposing ischaemia (20 min of low-flow perfusion with 1 ml/min and 10 min of global ischaemia) and reperfusion (15 min with 5 ml/min). During low-flow perfusion, the coronary endothelium was stimulated by thrombin before and during infusion of a bolus: 108 washed human platelets±the Arg–Gly–Asp (RGD) analogon lamifiban, the supernatant of 108 thrombin-stimulated platelets, fibrinogen (2 μM), lamifiban (2 μM) or Tyrode’s solution (control group). The parameter external heart work (EHW), determined pre- and postischaemically, served as criterion for recovery of myocardial function. Additionally, the formation of capillary transudate was measured during the reperfusion phase to assess coronary permeability. Coronary perfusion pressure was monitored continuously and myocardial production of lactate and consumption of pyruvate were measured. Electron microscopy of hearts was performed after platelet application to verify platelet adhesion in the coronary system. Results: Recovery of EHW by hearts without platelet application was 64±3% and was significantly reduced to 49±5% by platelet infusion (n=8 each). Infusion of supernatant of thrombin-stimulated platelets did not impair recovery of heart work. In the reperfusion phase (6th–10th min), hearts that either had received platelets or supernatant of platelets exhibited a significantly reduced production of capillary transudate (70 μl/min vs. 180 μl/min for the controls). Intracoronary bolus application of fibrinogen or lamifiban also reduced coronary leak. Coronary perfusion pressure and metabolic parameters were not statistically different between the groups at any time. Conclusions: Platelet adhesion to the coronary endothelium in a situation of myocardial ischaemia impairs cardiac recovery, whereas constituents released by platelets may have beneficial effects on the integrity of the coronary endothelium. In particular, fibrinogen seems to contribute to the permeability reducing effect, possibly by interaction with endothelial receptors recognising the RGD sequence

    A neuronal network of mitochondrial dynamics regulates metastasis.

    Get PDF
    The role of mitochondria in cancer is controversial. Using a genome-wide shRNA screen, we now show that tumours reprogram a network of mitochondrial dynamics operative in neurons, including syntaphilin (SNPH), kinesin KIF5B and GTPase Miro1/2 to localize mitochondria to the cortical cytoskeleton and power the membrane machinery of cell movements. When expressed in tumours, SNPH inhibits the speed and distance travelled by individual mitochondria, suppresses organelle dynamics, and blocks chemotaxis and metastasis, in vivo. Tumour progression in humans is associated with downregulation or loss of SNPH, which correlates with shortened patient survival, increased mitochondrial trafficking to the cortical cytoskeleton, greater membrane dynamics and heightened cell invasion. Therefore, a SNPH network regulates metastatic competence and may provide a therapeutic target in cancer
    corecore