734 research outputs found

    Assessing the impact of verbal and visuospatial working memory load on eye-gaze cueing

    Get PDF
    Observers tend to respond more quickly to peripheral stimuli that are being gazed at by a centrally presented face, than to stimuli that are not being gazed at. While this gaze-cueing effect was initially seen as reflexive, there have also been some indications that top-down control processes may be involved. Therefore, the present investigation employed a dual-task paradigm to attempt to disrupt the putative control processes involved in gaze cueing. Two experiments examined the impact of working memory load on gaze cueing. In Experiment 1, participants were required to hold a set of digits in working memory during each gaze trial. In Experiment 2, the gaze task was combined with an auditory task that required the manipulation and maintenance of visuo-spatial information. Gaze cueing effects were observed, but they were not modulated by dual-task load in either experiment. These results are consistent with traditional accounts of gaze cueing as a highly reflexive process

    Cognitive demands of face monitoring: Evidence for visuospatial overload

    Get PDF
    Young children perform difficult communication tasks better face to face than when they cannot see one another (e.g., Doherty-Sneddon & Kent, 1996). However, in recent studies, it was found that children aged 6 and 10 years, describing abstract shapes, showed evidence of face-to-face interference rather than facilitation. For some communication tasks, access to visual signals (such as facial expression and eye gaze) may hinder rather than help children’s communication. In new research we have pursued this interference effect. Five studies are described with adults and 10- and 6-year-old participants. It was found that looking at a face interfered with children’s abilities to listen to descriptions of abstract shapes. Children also performed visuospatial memory tasks worse when they looked at someone’s face prior to responding than when they looked at a visuospatial pattern or at the floor. It was concluded that performance on certain tasks was hindered by monitoring another person’s face. It is suggested that processing of visual communication signals shares certain processing resources with the processing of other visuospatial information

    Quantitative evaluation of polymer gel dosimeters by broadband ultrasound attenuation

    Get PDF
    Ultrasound has been examined previously as an alternative readout method for irradiated polymer gel dosimeters, with authors reporting varying dose response to ultrasound transmission measurements. In this current work we extend previous work to measure the broadband ultrasound attenuation (BUA) response of irradiated PAGAT gel dosimeters, using a novel ultrasound computed tomography system

    A Behavioural Foundation for Natural Computing and a Programmability Test

    Full text link
    What does it mean to claim that a physical or natural system computes? One answer, endorsed here, is that computing is about programming a system to behave in different ways. This paper offers an account of what it means for a physical system to compute based on this notion. It proposes a behavioural characterisation of computing in terms of a measure of programmability, which reflects a system's ability to react to external stimuli. The proposed measure of programmability is useful for classifying computers in terms of the apparent algorithmic complexity of their evolution in time. I make some specific proposals in this connection and discuss this approach in the context of other behavioural approaches, notably Turing's test of machine intelligence. I also anticipate possible objections and consider the applicability of these proposals to the task of relating abstract computation to nature-like computation.Comment: 37 pages, 4 figures. Based on an invited Talk at the Symposium on Natural/Unconventional Computing and its Philosophical Significance, Alan Turing World Congress 2012, Birmingham, UK. http://link.springer.com/article/10.1007/s13347-012-0095-2 Ref. glitch fixed in 2nd. version; Philosophy & Technology (special issue on History and Philosophy of Computing), Springer, 201

    A functorial construction of moduli of sheaves

    Full text link
    We show how natural functors from the category of coherent sheaves on a projective scheme to categories of Kronecker modules can be used to construct moduli spaces of semistable sheaves. This construction simplifies or clarifies technical aspects of existing constructions and yields new simpler definitions of theta functions, about which more complete results can be proved.Comment: 52 pp. Dedicated to the memory of Joseph Le Potier. To appear in Inventiones Mathematicae. Slight change in the definition of the Kronecker algebra in Secs 1 (p3) and 2.2 (p6), with corresponding small alterations elsewhere, to make the constructions work for non-reduced schemes. Section 6.5 rewritten. Remark 2.6 and new references adde

    Avalanches in self-organized critical neural networks: A minimal model for the neural SOC universality class

    Full text link
    The brain keeps its overall dynamics in a corridor of intermediate activity and it has been a long standing question what possible mechanism could achieve this task. Mechanisms from the field of statistical physics have long been suggesting that this homeostasis of brain activity could occur even without a central regulator, via self-organization on the level of neurons and their interactions, alone. Such physical mechanisms from the class of self-organized criticality exhibit characteristic dynamical signatures, similar to seismic activity related to earthquakes. Measurements of cortex rest activity showed first signs of dynamical signatures potentially pointing to self-organized critical dynamics in the brain. Indeed, recent more accurate measurements allowed for a detailed comparison with scaling theory of non-equilibrium critical phenomena, proving the existence of criticality in cortex dynamics. We here compare this new evaluation of cortex activity data to the predictions of the earliest physics spin model of self-organized critical neural networks. We find that the model matches with the recent experimental data and its interpretation in terms of dynamical signatures for criticality in the brain. The combination of signatures for criticality, power law distributions of avalanche sizes and durations, as well as a specific scaling relationship between anomalous exponents, defines a universality class characteristic of the particular critical phenomenon observed in the neural experiments. The spin model is a candidate for a minimal model of a self-organized critical adaptive network for the universality class of neural criticality. As a prototype model, it provides the background for models that include more biological details, yet share the same universality class characteristic of the homeostasis of activity in the brain.Comment: 17 pages, 5 figure

    Is the Multiverse Hypothesis capable of explaining the Fine Tuning of Nature Laws and Constants? The Case of Cellular Automata

    Full text link
    The objective of this paper is analyzing to which extent the multiverse hypothesis provides a real explanation of the peculiarities of the laws and constants in our universe. First we argue in favor of the thesis that all multiverses except Tegmark's > are too small to explain the fine tuning, so that they merely shift the problem up one level. But the > is surely too large. To prove this assessment, we have performed a number of experiments with cellular automata of complex behavior, which can be considered as universes in the mathematical multiverse. The analogy between what happens in some automata (in particular Conway's >) and the real world is very strong. But if the results of our experiments can be extrapolated to our universe, we should expect to inhabit -- in the context of the multiverse -- a world in which at least some of the laws and constants of nature should show a certain time dependence. Actually, the probability of our existence in a world such as ours would be mathematically equal to zero. In consequence, the results presented in this paper can be considered as an inkling that the hypothesis of the multiverse, whatever its type, does not offer an adequate explanation for the peculiarities of the physical laws in our world. A slightly reduced version of this paper has been published in the Journal for General Philosophy of Science, Springer, March 2013, DOI: 10.1007/s10838-013-9215-7.Comment: 30 pages, 16 figures, 5 tables. Slightly reduced version published in Journal for General Philosophy of Scienc

    A self-organized model for cell-differentiation based on variations of molecular decay rates

    Get PDF
    Systemic properties of living cells are the result of molecular dynamics governed by so-called genetic regulatory networks (GRN). These networks capture all possible features of cells and are responsible for the immense levels of adaptation characteristic to living systems. At any point in time only small subsets of these networks are active. Any active subset of the GRN leads to the expression of particular sets of molecules (expression modes). The subsets of active networks change over time, leading to the observed complex dynamics of expression patterns. Understanding of this dynamics becomes increasingly important in systems biology and medicine. While the importance of transcription rates and catalytic interactions has been widely recognized in modeling genetic regulatory systems, the understanding of the role of degradation of biochemical agents (mRNA, protein) in regulatory dynamics remains limited. Recent experimental data suggests that there exists a functional relation between mRNA and protein decay rates and expression modes. In this paper we propose a model for the dynamics of successions of sequences of active subnetworks of the GRN. The model is able to reproduce key characteristics of molecular dynamics, including homeostasis, multi-stability, periodic dynamics, alternating activity, differentiability, and self-organized critical dynamics. Moreover the model allows to naturally understand the mechanism behind the relation between decay rates and expression modes. The model explains recent experimental observations that decay-rates (or turnovers) vary between differentiated tissue-classes at a general systemic level and highlights the role of intracellular decay rate control mechanisms in cell differentiation.Comment: 16 pages, 5 figure

    A framework for the local information dynamics of distributed computation in complex systems

    Full text link
    The nature of distributed computation has often been described in terms of the component operations of universal computation: information storage, transfer and modification. We review the first complete framework that quantifies each of these individual information dynamics on a local scale within a system, and describes the manner in which they interact to create non-trivial computation where "the whole is greater than the sum of the parts". We describe the application of the framework to cellular automata, a simple yet powerful model of distributed computation. This is an important application, because the framework is the first to provide quantitative evidence for several important conjectures about distributed computation in cellular automata: that blinkers embody information storage, particles are information transfer agents, and particle collisions are information modification events. The framework is also shown to contrast the computations conducted by several well-known cellular automata, highlighting the importance of information coherence in complex computation. The results reviewed here provide important quantitative insights into the fundamental nature of distributed computation and the dynamics of complex systems, as well as impetus for the framework to be applied to the analysis and design of other systems.Comment: 44 pages, 8 figure
    • 

    corecore