83 research outputs found
ATP-dependent chromatosome remodeling
Chromatin serves to package, protect and organize the complex eukaryotic genomes to assure their stable inheritance over many cell generations. At the same time, chromatin must be dynamic to allow continued use of DNA during a cell's lifetime. One important principle that endows chromatin with flexibility involves ATP-dependent `remodeling' factors, which alter DNA-histone interactions to form, disrupt or move nucleosomes. Remodeling is well documented at the nucleosomal level, but little is known about the action of remodeling factors in a more physiological chromatin environment. Recent findings suggest that some remodeling machines can reorganize even folded chromatin fibers containing the linker histone H1, extending the potential scope of remodeling reactions to the bulk of euchromatin
The cellular abundance of the essential transcription termination factor TTF-I regulates ribosome biogenesis and is determined by MDM2 ubiquitinylation
The ARF tumour suppressor stabilizes p53 by negatively regulating the E3 ubiquitin ligase MDM2 to promote cell cycle arrest and cell death. However, ARF is also able to arrest cell proliferation by inhibiting ribosome biogenesis. In greater part this is achieved by targeting the transcription termination factor I (TTF-I) for nucleolar export, leading to an inhibition of both ribosomal RNA synthesis and processing. We now show that in the absence of ARF, TTF-I is ubiquitinylated by MDM2. MDM2 interacts directly with TTF-I and regulates its cellular abundance by targeting it for degradation by the proteasome. Enhanced TTF-I levels inhibit ribosome biogenesis by suppressing ribosomal RNA synthesis and processing, strongly suggesting that exact TTF-I levels are critical for efficient ribosome biogenesis. We further show that concomitant with its ability to displace TTF-I from the nucleolus, ARF inhibits MDM2 ubiquitinylation of TTF-I by competitively binding to a site overlapping the MDM2 interaction site. Thus, both the sub-nuclear localization and the abundance of TTF-I are key regulators of ribosome biogenesis
RSF Governs Silent Chromatin Formation via Histone H2Av Replacement
Human remodeling and spacing factor (RSF) consists of a heterodimer of Rsf-1 and hSNF2H, a counterpart of Drosophila ISWI. RSF possesses not only chromatin remodeling activity but also chromatin assembly activity in vitro. While no other single factor can execute the same activities as RSF, the biological significance of RSF remained unknown. To investigate the in vivo function of RSF, we generated a mutant allele of Drosophila Rsf-1 (dRsf-1). The dRsf-1 mutant behaved as a dominant suppressor of position effect variegation. In dRsf-1 mutant, the levels of histone H3K9 dimethylation and histone H2A variant H2Av were significantly reduced in an euchromatic region juxtaposed with heterochromatin. Furthermore, using both genetic and biochemical approaches, we demonstrate that dRsf-1 interacts with H2Av and the H2Av-exchanging machinery Tip60 complex. These results suggest that RSF contributes to histone H2Av replacement in the pathway of silent chromatin formation
Genetic Identification of a Network of Factors that Functionally Interact with the Nucleosome Remodeling ATPase ISWI
Nucleosome remodeling and covalent modifications of histones play fundamental roles in chromatin structure and function. However, much remains to be learned about how the action of ATP-dependent chromatin remodeling factors and histone-modifying enzymes is coordinated to modulate chromatin organization and transcription. The evolutionarily conserved ATP-dependent chromatin-remodeling factor ISWI plays essential roles in chromosome organization, DNA replication, and transcription regulation. To gain insight into regulation and mechanism of action of ISWI, we conducted an unbiased genetic screen to identify factors with which it interacts in vivo. We found that ISWI interacts with a network of factors that escaped detection in previous biochemical analyses, including the Sin3A gene. The Sin3A protein and the histone deacetylase Rpd3 are part of a conserved histone deacetylase complex involved in transcriptional repression. ISWI and the Sin3A/Rpd3 complex co-localize at specific chromosome domains. Loss of ISWI activity causes a reduction in the binding of the Sin3A/Rpd3 complex to chromatin. Biochemical analysis showed that the ISWI physically interacts with the histone deacetylase activity of the Sin3A/Rpd3 complex. Consistent with these findings, the acetylation of histone H4 is altered when ISWI activity is perturbed in vivo. These findings suggest that ISWI associates with the Sin3A/Rpd3 complex to support its function in vivo
The CCCTC-Binding Factor (CTCF) of Drosophila Contributes to the Regulation of the Ribosomal DNA and Nucleolar Stability
In the repeat array of ribosomal DNA (rDNA), only about half of the genes are actively transcribed while the others are silenced. In arthropods, transposable elements interrupt a subset of genes, often inactivating transcription of those genes. Little is known about the establishment or separation of juxtaposed active and inactive chromatin domains, or preferential inactivation of transposable element interrupted genes, despite identity in promoter sequences. CTCF is a sequence-specific DNA binding protein which is thought to act as a transcriptional repressor, block enhancer-promoter communication, and delimit juxtaposed domains of active and inactive chromatin; one or more of these activities might contribute to the regulation of this repeated gene cluster. In support of this hypothesis, we show that the Drosophila nucleolus contains CTCF, which is bound to transposable element sequences within the rDNA. Reduction in CTCF gene activity results in nucleolar fragmentation and reduced rDNA silencing, as does disruption of poly-ADP-ribosylation thought to be necessary for CTCF nucleolar localization. Our data establish a role for CTCF as a component necessary for proper control of transposable element-laden rDNA transcription and nucleolar stability
Factors associated with medication information in diabetes care: differences in perceptions between patients and health care professionals
Contains fulltext :
152227.pdf (publisher's version ) (Open Access)PURPOSE: This qualitative study in patients with type 2 diabetes and health care professionals (HCPs) aimed to investigate which factors they perceive to enhance or impede medication information provision in primary care. Similarities and differences in perspectives were explored. METHODS: Eight semistructured focus groups were conducted, four with type 2 diabetes patients (n=25) and four with both general practitioners (n=13) and health care assistants (n=10). Sessions were audio and video recorded, transcribed verbatim, and subjected to computer-aided qualitative content analysis. RESULTS: Diabetes patients and HCPs broadly highlighted similar factors as enablers for satisfactory medication information delivery. Perceptions substantially differed regarding impeding factors. Both patients and HCPs perceived it to be essential to deliver tailored information, to have a trustful and continuous patient-provider relationship, to regularly reconcile medications, and to provide tools for medication management. However, substantial differences in perceptions related to impeding factors included the causes of inadequate information, the detail required for risk-related information, and barriers to medication reconciliation. Medication self-management was a prevalent topic among patients, whereas HCPs' focus was on fulfilling therapy and medication management responsibilities. CONCLUSION: The findings suggest a noteworthy gap in perceptions between information provision and patients' needs regarding medication-related communication. Medication safety and adherence may be improved if HCPs collaborate more closely with diabetes patients in managing their medication, in particular by incorporating the patients' perspective. Health care systems need to be structured in a way that supports this process
- β¦