38 research outputs found

    Genetic markers in s. Paratyphi c reveal primary adaptation to pigs

    Get PDF
    Salmonella enterica with the identical antigenic formula 6,7:c:1,5 can be differentiated biochemically and by disease syndrome. One grouping, Salmonella Paratyphi C, is currently considered a typhoidal serovar, responsible for enteric fever in humans. The human-restricted typhoidal serovars (S. Typhi and Paratyphi A, B and C) typically display high levels of genome degradation and are cited as an example of convergent evolution for host adaptation in humans. However, S. Paratyphi C presents a different clinical picture to S. Typhi/Paratyphi A, in a patient group with predisposition, raising the possibility that its natural history is different, and that infection is invasive salmonellosis rather than enteric fever. Using whole genome sequencing and metabolic pathway analysis, we compared the genomes of 17 S. Paratyphi C strains to other members of the 6,7:c:1,5 group and to two typhoidal serovars: S. Typhi and Paratyphi A. The genome degradation observed in S. Paratyphi C was much lower than S. Typhi/Paratyphi A, but similar to the other 6,7:c:1,5 strains. Genomic and metabolic comparisons revealed little to no overlap between S. Paratyphi C and the other typhoidal serovars, arguing against convergent evolution and instead providing evidence of a primary adaptation to pigs in accordance with the 6,7:c:1.5 strains

    An Algerian perspective on non-typhoidal Salmonella infection

    Get PDF
    Non-typhoidal Salmonella (NTS) represents a leading cause of food-borne disease worldwide. It is a global public health concern: more than 94 million cases and 115,000 deaths are reported every year, with a disproportionate impact in developing countries. The prevalence of multi-drug-resistant (MDR) Salmonella strains is another major health concern which affects antimicrobial treatment, as many studies report that infections caused by MDR strains are more severe than those caused by susceptible strains. In Algeria, NTS represent one of the primary causes of salmonellosis in both humans and food animal production, especially poultry. Epidemiological surveillance systems and monitoring programs for Salmonella infections are essential requirements to provide data useful for the effective detection and control of Salmonella outbreaks. The present review will supply a perspective on NTS infection, pathogenesis and antimicrobial resistance with a focus on the epidemiology of salmonellosis in Algeria

    Salmonella nomenclature in the genomic era: a time for change

    Get PDF
    Salmonella enterica nomenclature has evolved over the past one hundred years into a highly sophisticated naming convention based on the recognition of antigens by specific antibodies. This serotyping scheme has led to the definition of over 2500 serovars which are well understood, have standing in nomenclature and, for the majority, biological relevance. Therefore, it is highly desirable for any change in naming convention to maintain backwards compatibility with the information linked to these serovars. The routine use of whole genome sequencing and the well-established link between sequence types and serovars presents an opportunity to update the scheme by incorporating the phylogenetically relevant sequence data whilst preserving the best of serotyping nomenclature. Advantages include: overcoming the variability in antibody preparations; removing the need to use laboratory animals and implementing a truly universal system. However, the issue of trying to reproduce the phenotyping gold standard needs to be relaxed if we are to fully embrace the genomic era. We have used whole genome sequence data from over 46,000 isolates of Salmonella enterica subspecies enterica to define clusters in two stages: Multi Locus Sequence Typing followed by antigen prediction. Sequence type—serotype discrepancies were resolved using core SNP clustering to determine the phylogenetic groups and this was confirmed by overlaying the antigenic prediction onto the core SNP clusters and testing the separation of clusters using cgMLST Hierarchical Clustering. This allowed us to define any major antigenic clusters within an ST—here called the MAC type and written as ST-serovar. Using this method, 99.96% of Salmonella isolates reported in the UK were assigned a MAC type and linked to a serovar name taken from the Kauffmann and White scheme. We propose a change for reporting of Salmonella enterica sub-types using the ST followed by serovar

    Genomic surveillance detects Salmonella enterica serovar Paratyphi A harbouring blaCTX-M-15 from a traveller returning from Bangladesh

    Get PDF
    Whole genome sequencing (WGS) has been used routinely by Public Health England (PHE) for identification, surveillance and monitoring of resistance determinants in referred Salmonella isolates since 2015. We report the first identified case of extended-spectrum-β-lactamase (ESBL) Salmonella enterica serovar Paratyphi A (S. Paratyphi A) isolated from a traveller returning to England from Bangladesh in November 2017. The isolate (440915) was resistant to ciprofloxacin and harboured both the mobile element ISEcp9 -blaCTX-M-15-hp-tnpA and blaTEM-191, associated with ESBL production. Phenotypic resistance was subsequently confirmed by Antimicrobial Susceptibility Testing (AST). S. Paratyphi A 440915 harboured an IncI1 plasmid previously reported to encode ESBL elements in Enterobacteriaceae and recently described in a S. Typhi isolate from Bangladesh. Results from this study indicate the importance of monitoring imported drug resistance for typhoidal salmonellae as ceftriaxone is the first line antibiotic treatment for complicated enteric fever in England. We conclude that WGS provides a rapid, accurate method for surveillance of drug resistance genes in Salmonella, leading to the first reported case of ESBL producing S. Paratyphi A and continues to inform the national treatment guidelines for management of enteric fever

    Fundamental differences in physiology of Bordetella pertussis dependent on the two-component system Bvg revealed by gene essentiality studies.

    Get PDF
    The identification of genes essential for a bacterium's growth reveals much about its basic physiology under different conditions. Bordetella pertussis, the causative agent of whooping cough, adopts both virulent and avirulent states through the activity of the two-component system, Bvg. The genes essential for B. pertussis growth in vitro were defined using transposon sequencing, for different Bvg-determined growth states. In addition, comparison of the insertion indices of each gene between Bvg phases identified those genes whose mutation exerted a significantly different fitness cost between phases. As expected, many of the genes identified as essential for growth in other bacteria were also essential for B. pertussis. However, the essentiality of some genes was dependent on Bvg. In particular, a number of key cell wall biosynthesis genes, including the entire mre/mrd locus, were essential for growth of the avirulent (Bvg minus) phase but not the virulent (Bvg plus) phase. In addition, cell wall biosynthesis was identified as a fundamental process that when disrupted produced greater fitness costs for the Bvg minus phase compared to the Bvg plus phase. Bvg minus phase growth was more susceptible than Bvg plus phase growth to the cell wall-disrupting antibiotic ampicillin, demonstrating the increased susceptibility of the Bvg minus phase to disruption of cell wall synthesis. This Bvg-dependent conditional essentiality was not due to Bvg-regulation of expression of cell wall biosynthesis genes; suggesting that this fundamental process differs between the Bvg phases in B. pertussis and is more susceptible to disruption in the Bvg minus phase. The ability of a bacterium to modify its cell wall synthesis is important when considering the action of antibiotics, particularly if developing novel drugs targeting cell wall synthesis

    Ceftriaxone resistant Salmonella Typhi carries an IncI1-ST31 plasmid encoding CTXM-15

    Get PDF
    Purpose: Ceftriaxone is the drug of choice for typhoid fever and the emergence of resistant Salmonella Typhi raises major concerns for treatment. There are an increasing number of sporadic reports of ceftriaxone resistant S. Typhi and limiting the risk of treatment failure in the patient and outbreaks in the community must be prioritised. This study describes the use of whole genome sequencing to guide outbreak identification and case management. Methodology: An isolate of ceftriaxone resistant S. Typhi from the blood of a child taken in 2011 at the Popular Diagnostic Center, Dhaka, Bangladesh was subjected to whole genome sequencing, using an Illumina NextSeq 500 and analysis using Geneious software. Results: Comparison with other ceftriaxone resistant S. Typhi revealed an isolate from the Democratic Republic of the Congo in 2015 as the closest relative but no evidence of an outbreak. A plasmid belonging to incompatibility group I1 (IncI1-ST31) which included blaCTX-M-15 (ceftriaxone resistance) associated with ISEcp-1 was identified. High similarity (90%) was seen with pS115, an IncI1 plasmid from S. Enteritidis, and with pESBL- EA11, an incI1 plasmid from E. coli (99%) showing that S. Typhi has access to ceftriaxone resistance through the acquisition of common plasmids. Conclusions: The transmission of ceftriaxone resistance from E. coli to S. Typhi is of concern because of clinical resistance to ceftriaxone, the main stay of typhoid treatment. Whole genome sequencing, albeit several years after the isolation, demonstrated the success of containment but clinical trials with alternative agents are urgently required

    Genome-scale metabolic modelling approach to understand the metabolism of the opportunistic human pathogen Staphylococcus epidermidis RP62A

    Get PDF
    Staphylococcus epidermidis is a common commensal of collagen-rich regions of the body, such as the skin, but also represents a threat to patients with medical implants (joints and heart), and to preterm babies. Far less studied than Staphylococcus aureus, the mechanisms behind this increasingly recognised pathogenicity are yet to be fully understood. Improving our knowledge of the metabolic processes that allow S. epidermidis to colonise different body sites is key to defining its pathogenic potential. Thus, we have constructed a fully curated, genome-scale metabolic model for S. epidermidis RP62A, and investigated its metabolic properties with a focus on substrate auxotrophies and its utilisation for energy and biomass production. Our results show that, although glucose is available in the medium, only a small portion of it enters the glycolytic pathways, whils most is utilised for the production of biofilm, storage and the structural components of biomass. Amino acids, proline, valine, alanine, glutamate and arginine, are preferred sources of energy and biomass production. In contrast to previous studies, we have shown that this strain has no real substrate auxotrophies, although removal of proline from the media has the highest impact on the model and the experimental growth characteristics. Further study is needed to determine the significance of proline, an abundant amino acid in collagen, in S. epidermidis colonisation

    Pseudogene accumulation in the evolutionary histories of Salmonella enterica serovars Paratyphi A and Typhi

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Of the > 2000 serovars of <it>Salmonella enterica </it>subspecies I, most cause self-limiting gastrointestinal disease in a wide range of mammalian hosts. However, <it>S. enterica </it>serovars Typhi and Paratyphi A are restricted to the human host and cause the similar systemic diseases typhoid and paratyphoid fever. Genome sequence similarity between Paratyphi A and Typhi has been attributed to convergent evolution via relatively recent recombination of a quarter of their genomes. The accumulation of pseudogenes is a key feature of these and other host-adapted pathogens, and overlapping pseudogene complements are evident in Paratyphi A and Typhi.</p> <p>Results</p> <p>We report the 4.5 Mbp genome of a clinical isolate of Paratyphi A, strain AKU_12601, completely sequenced using capillary techniques and subsequently checked using Illumina/Solexa resequencing. Comparison with the published genome of Paratyphi A ATCC9150 revealed the two are collinear and highly similar, with 188 single nucleotide polymorphisms and 39 insertions/deletions. A comparative analysis of pseudogene complements of these and two finished Typhi genomes (CT18, Ty2) identified several pseudogenes that had been overlooked in prior genome annotations of one or both serovars, and identified 66 pseudogenes shared between serovars. By determining whether each shared and serovar-specific pseudogene had been recombined between Paratyphi A and Typhi, we found evidence that most pseudogenes have accumulated after the recombination between serovars. We also divided pseudogenes into relative-time groups: ancestral pseudogenes inherited from a common ancestor, pseudogenes recombined between serovars which likely arose between initial divergence and later recombination, serovar-specific pseudogenes arising after recombination but prior to the last evolutionary bottlenecks in each population, and more recent strain-specific pseudogenes.</p> <p>Conclusion</p> <p>Recombination and pseudogene-formation have been important mechanisms of genetic convergence between Paratyphi A and Typhi, with most pseudogenes arising independently after extensive recombination between the serovars. The recombination events, along with divergence of and within each serovar, provide a relative time scale for pseudogene-forming mutations, affording rare insights into the progression of functional gene loss associated with host adaptation in <it>Salmonella</it>.</p

    Emergence of resistance to fluoroquinolones and third-generation cephalosporins in Salmonella Typhi in Lahore, Pakistan

    Get PDF
    Extensively drug-resistant (XDR) Salmonella Typhi has been reported in Sindh province of Pakistan since 2016. The potential for further spread is of serious concern as remaining treatment options are severely limited. We report the phenotypic and genotypic characterization of 27 XDR S. Typhi isolated from patients attending Jinnah Hospital, Lahore, Pakistan. Isolates were identified by biochemical profiling; antimicrobial susceptibility was determined by a modified Kirby-Bauer method. These findings were confirmed using Illumina whole genome nucleotide sequence data. All sequences were compared to the outbreak strain from Southern Pakistan and typed using the S. Typhi genotyping scheme. All isolates were confirmed by a sequence analysis to harbor an IncY plasmid and the CTX-M-15 ceftriaxone resistance determinant. All isolates were of the same genotypic background as the outbreak strain from Sindh province. We report the first emergence of XDR S. Typhi in Punjab province of Pakistan confirmed by whole genome sequencing
    corecore